What is the largest number $f(d)$ where every graph with average degree at least $d$ contains a subdivision of $K_{f(d)}$? Mader asked this question in 1967 and $f(d) = \Theta(\sqrt{d})$ was proved by Bollobás and Thomason and independently by Komlós and Szemerédi. This is best possible by considering a disjoint union of $K_{d,d}$. However, this …
35 events found.
Discrete Math Seminar
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
The independent domination number of a graph $G$, denoted $i(G)$, is the minimum size of an independent dominating set of $G$. In this talk, we prove a series of results regarding independent domination of graphs with bounded maximum degree. Let $G$ be a graph with maximum degree at most $k$ where $k \ge 1$. We prove that … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
We give some natural sufficient conditions for balls in a metric space to have small intersection. Roughly speaking, this happens when the metric space is (i) expanding and (ii) well-spread, and (iii) certain random variable on the boundary of a ball has a small tail. As applications, we show that the volume of intersection of … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|

