A family $\mathcal F$ of subsets of {1,2,…,n} is called maximal k-wise intersecting if every collection of at most k members from $\mathcal F$ has a common element, and moreover, no set can be added to $\mathcal F$ while preserving this property. In 1974, Erdős and Kleitman asked for the smallest possible size of a …
Discrete Math Seminar
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
A well-known theorem of Whitney states that a 3-connected planar graph admits an essentially unique embedding into the 2-sphere. We prove a 3-dimensional analogue: a simply-connected 2-complex every link graph of which is 3-connected admits an essentially unique locally flat embedding into the 3-sphere, if it admits one at all. This can be thought of … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
The poset Ramsey number $R(Q_{m},Q_{n})$ is the smallest integer $N$ such that any blue-red coloring of the elements of the Boolean lattice $Q_{N}$ has a blue induced copy of $Q_{m}$ or a red induced copy of $Q_{n}$. Axenovich and Walzer showed that $n+2\le R(Q_{2},Q_{n})\le2n+2$. Recently, Lu and Thompson improved the upper bound to $\frac{5}{3}n+2$. In … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
What is the largest number $f(d)$ where every graph with average degree at least $d$ contains a subdivision of $K_{f(d)}$? Mader asked this question in 1967 and $f(d) = \Theta(\sqrt{d})$ was proved by Bollobás and Thomason and independently by Komlós and Szemerédi. This is best possible by considering a disjoint union of $K_{d,d}$. However, this … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|

