Let $G$ be a graph on $V$ and $n$ a positive integer. Let $I_n(G)$ be the abstract simplicial complex whose faces are the subsets of $V$ that do not contain an independent set of size $n$ in $G$. We study the collapsibility numbers of $I_n(G)$ for various classes of graphs, focusing on the class of …
Discrete Math Seminar
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
For any given graph $H$, one may define a natural corresponding functional $\|.\|_H$ for real-valued functions by using homomorphism density. One may also extend this to complex-valued functions, once $H$ is paired with a $2$-edge-colouring $\alpha$ to assign conjugates. We say that $H$ is real-norming (resp. complex-norming) if $\|.\|_H$ (resp. there is $\alpha$ such that … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
We introduce some of well-known game-theoretic graph models and related problems. A contagion game model explains how an innovation diffuses over a given network structure and focuses on finding conditions on which structure an innovation becomes epidemic. Regular infinite graphs are interesting examples to explore. We show that regular infinite trees make an innovation least … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|

