Let $\mathcal{F}$ be a family of graphs, and let $p$ and $r$ be nonnegative integers. The $(p,r,\mathcal{F})$-Covering problem asks whether for a graph $G$ and an integer $k$, there exists a set $D$ of at most $k$ vertices in $G$ such that $G^p\setminus N_G^r$ has no induced subgraph isomorphic to a graph in $\mathcal{F}$, where …
Seminars and Colloquiums
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
|
1 event,
-
Following some recent FPT algorithms parameterized by the width of a given tree-partition due to Bodlaender, Cornelissen, and van der Wegen, we consider the parameterized problem of computing a decomposition. We prove that computing an optimal tree-partition is XALP-complete, which is likely to exclude FPT algorithms. However, we prove that computing a tree-partition of approximate … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
By a seminal result of Valiant, computing the permanent of (0, 1)-matrices is, in general, #P-hard. In 1913 Pólya asked for which (0, 1)-matrices A it is possible to change some signs such that the permanent of A equals the determinant of the resulting matrix. In 1975, Little showed these matrices to be exactly the … |
0 events,
|
1 event,
-
For fixed integers $r\ge 3, e\ge 3$, and $v\ge r+1$, let $f_r(n,v,e)$ denote the maximum number of edges in an $n$-vertex $r$-uniform hypergraph in which the union of arbitrary $e$ distinct edges contains at least $v+1$ vertices. In 1973, Brown, Erdős and Sós initiated the study of the function $f_r(n,v,e)$ and they proved that $\Omega(n^{\frac{er-v}{e-1}})=f_r(n,v,e)=O(n^{\lceil\frac{er-v}{e-1}\rceil})$. … |
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
A linear $3$-graph is called a (3-)hypertree if there exists exactly one path between each pair of two distinct vertices. A linear $3$-graph is called a Steiner triple system if each pair of two distinct vertices belong to a unique edge. A simple greedy algorithm shows that every $n$-vertex Steiner triple system $G$ contains all … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Finding the smallest integer $N=ES_d(n)$ such that in every configuration of $N$ points in $\mathbb{R}^d$ in general position, there exist $n$ points in convex position is one of the most classical problems in extremal combinatorics, known as the Erdős-Szekeres problem. In 1935, Erdős and Szekeres famously conjectured that $ES_2(n)=2^{n−2}+1$ holds, which was nearly settled by … |
0 events,
|
0 events,
|

