In this talk, we introduce homomorphisms between binary matroids that generalize graph homomorphisms. For a binary matroid $N$, we prove a complexity dichotomy for the problem $\rm{Hom}_\mathbb{M}(N)$ of deciding if a binary matroid $M$ admits a homomorphism to $N$. The problem is polynomial-time solvable if $N$ has a loop or has no circuits of odd …
Seminars and Colloquiums
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
1 event,
-
The upper tail problem for subgraph counts in the Erdos-Renyi graph, introduced by Janson-Ruciński, has attracted a lot of attention. There is a class of Gibbs measures associated with subgraph counts, called exponential random graph model (ERGM). Despite its importance, lots of fundamental questions have remained unanswered owing to the lack of exact solvability. In … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
1 event,
-
Hadwiger's transversal theorem gives necessary and sufficient conditions for the existence of a line transversal to a family of pairwise disjoint convex sets in the plane. These conditions were subsequently generalized to hyperplane transversals in $\mathbb{R}^d$ by Goodman, Pollack, and Wenger. Here we establish a colorful extension of their theorem, which proves a conjecture of … |
0 events,
|
1 event,
-
We present a canonical way to decompose finite graphs into highly connected local parts. The decomposition depends only on an integer parameter whose choice sets the intended degree of locality. The global structure of the graph, as determined by the relative position of these parts, is described by a coarser model. This is a simpler … |
1 event,
-
For a set $X$ of points $x(1)$, $x(2)$, $\ldots$, $x(n)$ in some real vector space $V$ we denote by $T(X,r)$ the set of points in $X$ that belong to the convex hulls of r pairwise disjoint subsets of $X$. We let $t(X,r)=1+\dim(T(X,r))$. Radon's theorem asserts that If $t(X,1)< |X|$, then $t(X, 2) >0$. The first … |
0 events,
|
0 events,
|
|
0 events,
|
1 event,
-
Reconfiguration is about changing instances in small steps. For example, one can perform certain moves on a Rubik's cube, each of them changing its configuration a bit. In this case, in at most 20 steps, one can end up with the preferred result. One could construct a graph with as nodes the possible configurations of … |
0 events,
|
1 event,
-
Transductions are a general formalism for expressing transformations of graphs (and more generally, of relational structures) in logic. We prove that a graph class C can be FO-transduced from a class of bounded-height trees (that is, has bounded shrubdepth) if, and only if, from C one cannot FO-transduce the class of all paths. This establishes … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
1 event,
-
SATNet is a differentiable constraint solver with a custom backpropagation algorithm, which can be used as a layer in a deep-learning system. It is a promising proposal for bridging deep learning and logical reasoning. In fact, SATNet has been successfully applied to learn, among others, the rules of a complex logical puzzle, such as Sudoku, … |
0 events,
|
0 events,
|
2 events,
-
We show that if $L_1$ and $L_2$ are linear transformations from $\mathbb{Z}^d$ to $\mathbb{Z}^d$ satisfying certain mild conditions, then, for any finite subset $A$ of $\mathbb{Z}^d$, \ This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for many choices of $L_1$ and …
-
One of the important work in graph theory is the graph minor theory developed by Robertson and Seymour in 1980-2010. This provides a complete description of the class of graphs that do not contain a fixed graph H as a minor. Later on, several generalizations of H-minor free graphs, which are sparse, have been defined … |
0 events,
|
0 events,
|

