Suppose that $E$ is a subset of $\mathbb{F}_q^n$, so that each point is contained in $E$ with probability $\theta$, independently of all other points. Then, what is the probability that there is an $m$-dimensional affine subspace that contains at least $\ell$ points of $E$? What is the probability that $E$ intersects all $m$-dimensional affine subspaces? …
Seminars and Colloquiums
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
1 event,
-
|
0 events,
|
1 event,
-
In 1982 Galvin, Rival, and Sands proved that in $K_{t,t}$-subgraph free graphs (t being fixed), the existence of a path of order n guarantees the existence of an induced path of order f(n), for some (slowly) increasing function f. The problem of obtaining good lower-bounds for f for specific graph classes was investigated decades later … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
1 event,
-
In 1975, Szemerédi proved that for every real number $\delta > 0 $ and every positive integer $k$, there exists a positive integer $N$ such that every subset $A$ of the set $\{1, 2, \cdots, N \}$ with $|A| \geq \delta N$ contains an arithmetic progression of length $k$. There has been a plethora of … |
0 events,
|
1 event,
-
The first-order model checking problem for finite graphs asks, given a graph G and a first-order sentence $\phi$ as input, to decide whether $\phi$ holds on G. Showing the existence of an efficient algorithm for this problem implies the existence of efficient parameterized algorithms for various commonly studied problems, such as independent set, distance-r dominating … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
1 event,
-
We introduce an odd coloring of a graph, which was introduced very recently, motivated by parity type colorings of graphs. A proper vertex coloring of graph $G$ is said to be odd if for each non-isolated vertex $x \in V (G)$ there exists a color $c$ such that $c$ is used an odd number of … |
0 events,
|
1 event,
-
We prove that for every graph F with at least one edge there are graphs H of arbitrarily large chromatic number and the same clique number as F such that every F-free induced subgraph of H has chromatic number at most c=c(F). (Here a graph is F-free if it does not contain an induced copy … |
0 events,
|
0 events,
|
0 events,
|

