Loading Events

« All Events

  • This event has passed.
:

Sebastian Wiederrecht, Killing a vortex

Tuesday, September 13, 2022 @ 4:30 PM - 5:30 PM KST

Room B332, IBS (기초과학연구원)

Speaker

Sebastian Wiederrecht
IBS Discrete Mathematics Group
https://www.wiederrecht.com

The Structural Theorem of the Graph Minors series of Robertson and Seymour asserts that, for every $t\in\mathbb{N},$ there exists some constant $c_{t}$ such that every $K_{t}$-minor-free graph admits a tree decomposition whose torsos can be transformed, by the removal of at most $c_{t}$ vertices, to graphs that can be seen as the union of some graph that is embeddable to some surface of Euler genus at most $c_{t}$ and “at most $c_{t}$ vortices of depth $c_{t}$”. Our main combinatorial result is a “vortex-free” refinement of the above structural theorem as follows: we identify a (parameterized) graph $H_{t}$, called shallow vortex grid, and we prove that if in the above structural theorem we replace $K_{t}$ by $H_{t},$ then the resulting decomposition becomes “vortex-free”. Up to now, the most general classes of graphs admitting such a result were either bounded Euler genus graphs or the so called single-crossing minor-free graphs. Our result is tight in the sense that, whenever we minor-exclude a graph that is not a minor of some $H_{t},$ the appearance of vortices is unavoidable. Using the above decomposition theorem, we design an algorithm that, given an $H_{t}$-minor-free graph $G$, computes the generating function of all perfect matchings of $G$ in polynomial time. This algorithm yields, on $H_{t}$-minor-free graphs, polynomial algorithms for computational problems such as the {dimer problem, the exact matching problem}, and the computation of the permanent. Our results, combined with known complexity results, imply a complete characterization of minor-closed graphs classes where the number of perfect matchings is polynomially computable: They are exactly those graph classes that do not contain every $H_{t}$ as a minor. This provides a sharp complexity dichotomy for the problem of counting perfect matchings in minor-closed classes.

This is joint work with Dimitrios M. Thilikos.

Details

Date:
Tuesday, September 13, 2022
Time:
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:

Venue

Room B332
IBS (기초과학연구원) + Google Map

Organizer

Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.