Loading Events

« All Events

:

Jungho Ahn (안정호), A coarse Erdős-Pósa theorem for constrained cycles

Tuesday, February 11, 2025 @ 4:30 PM - 5:30 PM KST

Room B332, IBS (기초과학연구원)

An induced packing of cycles in a graph is a set of vertex-disjoint cycles such that the graph has no edge between distinct cycles of the set. The classic Erdős-Pósa theorem shows that for every positive integer $k$, every graph contains $k$ vertex-disjoint cycles or a set of $O(k\log k)$ vertices which intersects every cycle of $G$.

We generalise this classic Erdős-Pósa theorem to induced packings of cycles of length at least $\ell$ for any integer $\ell$. We show that there exists a function $f(k,\ell)=O(\ell k\log k)$ such that for all positive integers $k$ and $\ell$ with $\ell\geq3$, every graph $G$ contains an induced packing of $k$ cycles of length at least $\ell$ or a set $X$ of at most $f(k,\ell)$ vertices such that the closed neighbourhood of $X$ intersects every cycle of $G$.

Furthermore, we extend the result to long cycles containing prescribed vertices. For a graph $G$ and a set $S\subseteq V(G)$, an $S$-cycle in $G$ is a cycle containing a vertex in $S$. We show that for all positive integers $k$ and $\ell$ with $\ell\geq3$, every graph $G$, and every set $S\subseteq V(G)$, $G$ contains an induced packing of $k$ $S$-cycles of length at least $\ell$ or a set $X$ of at moat $\ell*k^{O(1)}$ vertices such that the closed neighbourhood of $X$ intersects every cycle of $G$.

Our proofs are constructive and yield polynomial-time algorithms, for fixed $\ell$, finding either the induced packing of the constrained cycles or the set $X$.

This is based on joint works with Pascal Gollin, Tony Huynh, and O-joung Kwon.

Details

Date:
Tuesday, February 11, 2025
Time:
4:30 PM - 5:30 PM KST
Event Category:
Event Tags:
,

Venue

Room B332
IBS (기초과학연구원) + Google Map

Organizer

Sang-il Oum (엄상일)
View Organizer Website
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.