Jungho Ahn (안정호), Well-partitioned chordal graphs with the obstruction set and applications

Room B232 IBS (기초과학연구원)

We introduce a new subclass of chordal graphs that generalizes split graphs, which we call well-partitioned chordal graphs. Split graphs are graphs that admit a partition of the vertex set into cliques that can be arranged in a star structure, the leaves of which are of size one. Well-partitioned chordal graphs are a generalization of

Jungho Ahn (안정호), Unified almost linear kernels for generalized covering and packing problems on nowhere dense classes

Room B332 IBS (기초과학연구원)

Let F be a family of graphs, and let p and r be nonnegative integers. The (p,r,F)-Covering problem asks whether for a graph G and an integer k, there exists a set D of at most k vertices in G such that GpNGr has no induced subgraph isomorphic to a graph in F, where

Jungho Ahn (안정호), A coarse Erdős-Pósa theorem for constrained cycles

Room B332 IBS (기초과학연구원)

An induced packing of cycles in a graph is a set of vertex-disjoint cycles such that the graph has no edge between distinct cycles of the set. The classic Erdős-Pósa theorem shows that for every positive integer k, every graph contains k vertex-disjoint cycles or a set of O(klogk) vertices which intersects every cycle of G.

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.