Meike Hatzel, Constant congestion bramble

Zoom ID: 869 4632 6610 (ibsdimag)

In this talk I will present a small result we achieved during a workshop in February this year. My coauthors on this are Marcin Pilipczuk, Paweł Komosa and Manuel Sorge. A bramble in an undirected graph G is a family of connected subgraphs of G such that for every two subgraphs H1 and H2 in the bramble either $V(H_1) \cap

Meike Hatzel, Fixed-Parameter Tractability of Directed Multicut with Three Terminal Pairs Parametrised by the Size of the Cutset: Twin-Width Meets Flow-Augmentation

Room B332 IBS (기초과학연구원)

We show fixed-parameter tractability of the Directed Multicut problem with three terminal pairs (with a randomized algorithm). This problem, given a directed graph G, pairs of vertices (called terminals) (s1,t1), (s2,t2), and (s3,t3), and an integer k, asks to find a set of at most k non-terminal vertices in G that intersect all s1t1-paths, all

Meike Hatzel, Counterexample to Babai’s lonely colour conjecture

Room B332 IBS (기초과학연구원)

Motivated by colouring minimal Cayley graphs, in 1978 Babai conjectured that no-lonely-colour graphs have bounded chromatic number. We disprove this in a strong sense by constructing graphs of arbitrarily large girth and chromatic number that have a proper edge colouring in which each cycle contains no colour exactly once. The result presented is the joint

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.