Casey Tompkins, Extremal problems for Berge hypergraphs

Room B232 IBS (기초과학연구원)

Given a graph $G$, there are several natural hypergraph families one can define. Among the least restrictive is the family $BG$ of so-called Berge copies of the graph $G$. In this talk, we discuss Turán problems for families $BG$ in $r$-uniform hypergraphs for various graphs $G$. In particular, we are interested in general results in

Casey Tompkins, Saturation problems in the Ramsey theory of graphs, posets and point sets

Room B232 IBS (기초과학연구원)

In 1964, Erdős, Hajnal and Moon introduced a saturation version of Turán's classical theorem in extremal graph theory. In particular, they determined the minimum number of edges in a $K_r$-free, $n$-vertex graph with the property that the addition of any further edge yields a copy of $K_r$. We consider analogues of this problem in other

Casey Tompkins, Inverse Turán Problems

Room B232 IBS (기초과학연구원)

For given graphs $G$ and $F$, the Turán number $ex(G,F)$ is defined to be the maximum number of edges in an $F$-free subgraph of $G$. Briggs and Cox introduced a dual version of this problem wherein for a given number $k$, one maximizes the number of edges in a host graph $G$ for which $ex(G,H)

Casey Tompkins, Extremal forbidden poset problems in Boolean and linear lattices

Room B232 IBS (기초과학연구원)

Extending the classical theorem of Sperner on the maximum size of an antichain in the Boolean lattice, Katona and Tarján introduced a general extremal function $La(n,P)$, defined to be the maximum size of a family of subsets of $$ which does not contain a given poset $P$ among its containment relations.  In this talk, I

Casey Tompkins, 3-uniform hypergraphs avoiding a cycle of length four

Room B232 IBS (기초과학연구원)

We show that that the maximum number of of edges in a $3$-uniform hypergraph without a Berge-cycle of length four is at most $(1+o(1)) \frac{n^{3/2}}{\sqrt{10}}$. This improves earlier estimates by Győri and Lemons and by Füredi and Özkahya. Joint work with Ergemlidze, Győri, Methuku, Salia.

Casey Tompkins, Ramsey numbers of Boolean lattices

Room B232 IBS (기초과학연구원)

The poset Ramsey number $R(Q_{m},Q_{n})$ is the smallest integer $N$ such that any blue-red coloring of the elements of the Boolean lattice $Q_{N}$ has a blue induced copy of $Q_{m}$ or a red induced copy of $Q_{n}$. Axenovich and Walzer showed that $n+2\le R(Q_{2},Q_{n})\le2n+2$. Recently, Lu and Thompson improved the upper bound to $\frac{5}{3}n+2$. In

Casey Tompkins, On graphs without cycles of length 0 modulo 4

Room B332 IBS (기초과학연구원)

Bollobás proved that for every $k$ and $\ell$ such that $k\mathbb{Z}+\ell$ contains an even number, an $n$-vertex graph containing no cycle of length $\ell \bmod k$ can contain at most a linear number of edges. The precise (or asymptotic) value of the maximum number of edges in such a graph is known for very few

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.