Cheolwon Heo (허철원), Representations of even-cycle matroids

Room B232 IBS (기초과학연구원)

A signed graph is a pair $(G,\Sigma)$ where $G$ is a graph and $\Sigma$ is a subset of edges of $G$. A cycle $C$ of $G$ is a subset of edges of $G$ such that every vertex of the subgraph of $G$ induced by $C$ has an even degree. We say that $C$ is even

Cheolwon Heo (허철원), The complexity of the matroid-homomorphism problems

Room B332 IBS (기초과학연구원)

In this talk, we introduce homomorphisms between binary matroids that generalize graph homomorphisms. For a binary matroid $N$, we prove a complexity dichotomy for the problem $\rm{Hom}_\mathbb{M}(N)$ of deciding if a binary matroid $M$ admits a homomorphism to $N$. The problem is polynomial-time solvable if $N$ has a loop or has no circuits of odd

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.