Mathias Schacht, Canonical colourings in random graphs
Mathias Schacht, Canonical colourings in random graphs
Rödl and Ruciński established Ramsey's theorem for random graphs. In particular, for fixed integers $r$, $\ell\geq 2$ they showed that $n^{-\frac{2}{\ell+1}}$ is a threshold for the Ramsey property that every $r$-colouring of the edges of the binomial random graph $G(n,p)$ yields a monochromatic copy of $K_\ell$. We investigate how this result extends to arbitrary colourings …