Ben Lund, Furstenberg sets over finite fields

Room B232 IBS (기초과학연구원)

An important family of incidence problems are discrete analogs of deep questions in geometric measure theory. Perhaps the most famous example of this is the finite field Kakeya conjecture, proved by Dvir in 2008. Dvir's proof introduced the polynomial method to incidence geometry, which led to the solution to many long-standing problems in the area.

Adam Zsolt Wagner, The largest projective cube-free subsets of $Z_{2^n}$

Room B232 IBS (기초과학연구원)

What is the largest subset of $Z_{2^n}$ that doesn't contain a projective d-cube? In the Boolean lattice, Sperner's, Erdos's, Kleitman's and Samotij's theorems state that families that do not contain many chains must have a very specific layered structure. We show that if instead of $Z_2^n$ we work in $Z_{2^n}$, analogous statements hold if one

Dillon Mayhew, Courcelle’s Theorem for hypergraphs

Room B232 IBS (기초과학연구원)

Courcelle's Theorem is an influential meta-theorem published in 1990. It tells us that a property of graph can be tested in polynomial time, as long as the property can expressed in the monadic second-order logic of graphs, and as long as the input is restricted to a class of graphs with bounded tree-width. There are

Dong Yeap Kang (강동엽), Fragile minor-monotone parameters under random edge perturbation

Room B232 IBS (기초과학연구원)

We investigate how minor-monotone graph parameters change if we add a few random edges to a connected graph $H$. Surprisingly, after adding a few random edges, its treewidth, treedepth, genus, and the size of a largest complete minor become very large regardless of the shape of $H$. Our results are close to best possible for

Xin Zhang (张欣), On the equitable tree-coloring of graphs with low degeneracy

Room B232 IBS (기초과학연구원)

A (vertex) $k$-coloring of a graph $G$ is a tree-coloring if each color class induces a forest, and is equitable if the sizes of any two color classes differ by at most 1. The first relative result concerning the equitable tree-coloring of graphs is due to H. Fan, H. A. Kierstead, G. Liu, T. Molla,

Eun-Kyung Cho (조은경), Decomposition of a planar graph into a $d$-degenerate graph and a graph with maximum degree at most $h$

Room B232 IBS (기초과학연구원)

Given a graph $G$, a decomposition of $G$ is a collection of spanning subgraphs $H_1, \ldots, H_t$ of $G$ such that each edge of $G$ is an edge of $H_i$ for exactly one $i \in \{1, \ldots, t\}$. Given a positive integer $d$, a graph is said to be $d$-degenerate if every subgraph of it has

Dabeen Lee (이다빈), On a generalization of the Chvátal-Gomory closure

Room B232 IBS (기초과학연구원)

Integer programming is the problem of optimizing a linear function over the set of integer solutions satisfying a system of inequalities. The most successful technique in practice is the so-called "cutting-plane" algorithm in combination with branch-and-bound enumeration. Cutting-planes for an integer linear program are linear inequalities that are valid for all integer feasible solutions but

Kevin Hendrey, Covering radius in the Hamming permutation space

Room B232 IBS (기초과학연구원)

Our problem can be described in terms of a two player game, played with the set $\mathcal{S}_n$ of permutations on $\{1,2,\dots,n\}$. First, Player 1 selects a subset $S$ of $\mathcal{S}_n$ and shows it to Player 2. Next, Player 2 selects a permutation $p$ from $\mathcal{S}_n$ as different as possible from the permutations in $S$, and shows it to Player

Ringi Kim (김린기), The strong clique number of graphs with forbidden cycles

Room B232 IBS (기초과학연구원)

The strong clique number of a graph $G$ is the maximum size of a set of edges of which every pair has distance at most two. In this talk, we prove that every  $\{C_5,C_{2k}\}$-free graph has strong clique number at most $k\Delta(G)-(k-1)$, which resolves a conjecture by  Cames van Batenburg et al. We also prove

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.