Tony Huynh, A tight Erdős-Pósa function for planar minors

Room B109 IBS (기초과학연구원)

Let H be a planar graph. By a classical result of Robertson and Seymour, there is a function f(k) such that for all k and all graphs G, either G contains k vertex-disjoint subgraphs each containing H as a minor, or there is a subset X of at most f(k) vertices such that G−X has

Hong Liu, Polynomial Schur’s Theorem

Room B109 IBS (기초과학연구원)

I will discuss the Ramsey problem for {x,y,z:x+y=p(z)} for polynomials p over ℤ. This is joint work with Peter Pach and Csaba Sandor.

Joonkyung Lee (이준경), Sidorenko’s conjecture for blow-ups

Room B232 IBS (기초과학연구원)

A celebrated conjecture of Sidorenko and Erdős–Simonovits states that, for all bipartite graphs H, quasirandom graphs contain asymptotically the minimum number of copies of H taken over all graphs with the same order and edge density. This conjecture has attracted considerable interest over the last decade and is now known to hold for a broad

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.