Benjamin Bumpus, Directed branch-width: A directed analogue of tree-width

Zoom ID: 869 4632 6610 (ibsdimag)

Many problems that are NP-hard in general become tractable on `structurally recursive’ graph classes. For example, consider classes of bounded tree- or clique-width. Since the 1990s, many directed analogues of tree-width have been proposed. However, many natural problems (e.g. directed HamiltonPath and MaxCut) remain intractable on such digraph classes of `bounded width’. In this talk,

Ben Lund, Limit shape of lattice Zonotopes

Room B232 IBS (기초과학연구원)

A convex lattice polytope is the convex hull of a set of integral points. Vershik conjectured the existence of a limit shape for random convex lattice polygons, and three proofs of this conjecture were given in the 1990s by Bárány, by Vershik, and by Sinai. To state this old result more precisely, there is a

Adam Zsolt Wagner, Constructions in combinatorics via neural networks

Zoom ID: 869 4632 6610 (ibsdimag)

Recently, significant progress has been made in the area of machine learning algorithms, and they have quickly become some of the most exciting tools in a scientist’s toolbox. In particular, recent advances in the field of reinforcement learning have led computers to reach superhuman level play in Atari games and Go, purely through self-play. In

Alan Lew, Representability and boxicity of simplicial complexes

Zoom ID: 869 4632 6610 (ibsdimag)

An interval graph is the intersection graph of a family of intervals in the real line. Motivated by problems in ecology, Roberts defined the boxicity of a graph G to be the minimal k such that G can be written as the intersection of k interval graphs. A natural higher-dimensional generalization of interval graphs is

Hongseok Yang (양홍석), DAG-symmetries and Symmetry-Preserving Neural Networks

Room B232 IBS (기초과학연구원)

The preservation of symmetry is one of the key tools for designing data-efficient neural networks. A representative example is convolutional neural networks (CNNs); they preserve translation symmetries, and this symmetry preservation is often attributed to their success in real-world applications. In the machine-learning community, there is a growing body of work that explores a new

Jeong Ok Choi (최정옥), Invertibility of circulant matrices of arbitrary size

Room B232 IBS (기초과학연구원)

In this talk, we present sufficient conditions to guarantee the invertibility of rational circulant matrices with any given size. These sufficient conditions consist of linear combinations in terms of the entries in the first row with integer coefficients. Using these conditions we show the invertibility of some family of circulant matrices with particular forms of

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.