Suyun Jiang (江素云), How connectivity affects the extremal number of trees
Room B332 IBS (기초과학연구원)The Erdős-Sós conjecture states that the maximum number of edges in an
The Erdős-Sós conjecture states that the maximum number of edges in an
A graph class
An archetype problem in extremal combinatorics is to study the structure of subgraphs appearing in different classes of (hyper)graphs. We will focus on such embedding problems in uniformly dense hypergraphs. In precise, we will mention the uniform Turan density of some hypergraphs.
Consider the following hat guessing game:
A theoretical dynamical system is a pair (X,T) where X is a compact metric space and T is a self homeomorphism of X. The topological entropy of a theoretical dynamical system (X,T), first introduced in 1965 by Adler, Konheim and McAndrew, is a nonnegative real number that measures the complexity of the system. Systems with positive …
The well-known 1-2-3 Conjecture by Karoński, Łuczak and Thomason states that the edges of any connected graph with at least three vertices can be assigned weights 1, 2 or 3 so that for each edge
Program 9:40-10:05: Sang-il OUM, Obstructions for dense analogs of tree-depth 10:05-10:20: Kevin HENDREY, Structural and extremal results for twin-width 10:20-10:35: Rutger CAMPBELL, Down-sets in combinatorial posets 10:35-10:50: Linda COOK, Reuniting 𝜒-boundedness with polynomial 𝜒-boundedness
In a rainbow variant of the Turán problem, we consider
A loose cycle is a cyclic ordering of edges such that every two consecutive edges share exactly one vertex. A cycle is Hamilton if it spans all vertices. A codegree of a
Ramsey's Theorem guarantees for every graph H that any 2-edge-coloring of a sufficiently large complete graph contains a monochromatic copy of H. As probabilistic constructions often provide good bounds on quantities in extremal combinatorics, we say that a graph H is common if the random 2-edge-coloring asymptotically minimizes the number of monochromatic copies of H. …