Linda Cook, On polynomial degree-boundedness
Room B332 IBS (기초과학연구원)We prove a conjecture of Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé, and Walczak, that for every graph
We prove a conjecture of Bonamy, Bousquet, Pilipczuk, Rzążewski, Thomassé, and Walczak, that for every graph
Let
Bollobás proved that for every
The positive discrepancy of a graph
Delta-matroids are a generalization of matroids with connections to many parts of graph theory and combinatorics (such as matching theory and the structure of topological graph embeddings). Formally, a delta-matroid is a pair
We say that two functors Λ and Γ between thin categories of relational structures are adjoint if for all structures A and B, we have that Λ(A) maps homomorphically to B if and only if A maps homomorphically to Γ(B). If this is the case Λ is called the left adjoint to Γ and Γ …
A family
In 2017, Aharoni proposed the following generalization of the Caccetta-Häggkvist conjecture for digraphs. If G is a simple n-vertex edge-colored graph with n color classes of size at least r, then G contains a rainbow cycle of length at most ⌈n/r⌉. In this talk, we prove that Aharoni's conjecture holds up to an additive constant. …
A cross-cap drawing of a graph G is a drawing on the sphere with g distinct points, called cross-caps, such that the drawing is an embedding except at the cross-caps, where edges cross properly. A cross-cap drawing of a graph G with g cross-caps can be used to represent an embedding of G on a …
Very little is known about critical properties of graphs in the hierarchy of monotone classes, i.e. classes closed under taking (not necessarily induced) subgraphs. We distinguish four important levels in this hierarchy and discuss possible new levels by focusing on the Hamiltonian cycle problem. In particular, we obtain a number of results for this problem …