Andreas Holmsen, Large cliques in hypergraphs with forbidden substructures
Room B232 IBS (기초과학연구원)A result due to Gyárfás, Hubenko, and Solymosi, answering a question of Erdős, asserts that if a graph $G$ does not contain $K_{2,2}$ as an induced subgraph yet has at least $c\binom{n}{2}$ edges, then $G$ has a complete subgraph on at least $\frac{c^2}{10}n$ vertices. In this paper we suggest a "higher-dimensional" analogue of the notion …