Andreas Holmsen, Large cliques in hypergraphs with forbidden substructures

Room B232 IBS (기초과학연구원)

A result due to Gyárfás, Hubenko, and Solymosi, answering a question of Erdős, asserts that if a graph $G$ does not contain $K_{2,2}$ as an induced subgraph yet has at least $c\binom{n}{2}$ edges, then $G$ has a complete subgraph on at least $\frac{c^2}{10}n$ vertices. In this paper we suggest a "higher-dimensional" analogue of the notion

Jon-Lark Kim (김종락), Introduction to Boolean functions with Artificial Neural Network

Room B232 IBS (기초과학연구원)

A Boolean function is a function from the set Q of binary vectors of length n (i.e., the binary n-dimensional hypercube) to $F_2=\{0,1\}$. It has several applications to complexity theory, digital circuits, coding theory, and cryptography. In this talk we give a connection between Boolean functions and Artificial Neural Network. We describe how to represent

Rose McCarty, Circle graphs are polynomially chi-bounded

Room B232 IBS (기초과학연구원)

Circle graphs are the intersection graphs of chords on a circle; vertices correspond to chords, and two vertices are adjacent if their chords intersect. We prove that every circle graph with clique number k has chromatic number at most $4k^2$. Joint with James Davies.

Sang June Lee (이상준), On strong Sidon sets of integers

Room B232 IBS (기초과학연구원)

Let $\mathbb N$ be the set of natural numbers. A set $A\subset \mathbb N$ is called a Sidon set if the sums $a_1+a_2$, with $a_1,a_2\in S$ and $a_1\leq a_2$, are distinct, or equivalently, if \ for every $x,y,z,w\in S$ with $x<y\leq z<w$. We define strong Sidon sets as follows: For a constant $\alpha$ with $0\leq

Xin Zhang (张欣), On equitable tree-colorings of graphs

Room B232 IBS (기초과학연구원)

An equitable tree-$k$-coloring of a graph is a vertex coloring using $k$ distinct colors such that every color class (i.e, the set of vertices in a common color) induces a forest and the sizes of any two color classes differ by at most one. The minimum integer $k$ such that a graph $G$ is equitably

Lars Jaffke, A complexity dichotomy for critical values of the b-chromatic number of graphs

Room B232 IBS (기초과학연구원)

A $b$-coloring of a graph $G$ is a proper coloring of its vertices such that each color class contains a vertex that has at least one neighbor in all the other color classes. The $b$-Coloring problem asks whether a graph $G$ has a $b$-coloring with $k$ colors. The $b$-chromatic number of a graph $G$, denoted

Jinyoung Park (박진영), The number of maximal independent sets in the Hamming cube

Room B232 IBS (기초과학연구원)

Let $Q_n$ be the $n$-dimensional Hamming cube (hypercube) and $N=2^n$. We prove that the number of maximal independent sets in $Q_n$ is asymptotically $2n2^{N/4}$, as was conjectured by Ilinca and Kahn in connection with a question of Duffus, Frankl and Rödl. The value is a natural lower bound derived from a connection between maximal independent

Suil O (오수일), An odd [1,b]-factor in regular graphs from eigenvalues

Room B232 IBS (기초과학연구원)

An odd $$-factor of a graph is a spanning subgraph $H$ such that for every vertex $v \in V(G)$, $1 \le d_H(v) \le b$, and $d_H(v)$ is odd. For positive integers $r \ge 3$ and $b \le r$, Lu, Wu, and Yang gave an upper bound for the third largest eigenvalue in an $r$-regular graph with even number of

Patrice Ossona de Mendez, A model theoretical approach to sparsity

Room B232 IBS (기초과학연구원)

We discuss how the model theoretic notion of first-order transduction allows to define a notion of structural sparsity, and give some example of applications, like existence of low shrub-depth decompositions for tranductions of bounded expansion classes, characterization of transductions of classes with bounded pathwidth, decompositions of graphs with bounded rank-width into cographs.

Dabeen Lee (이다빈), Integrality of set covering polyhedra and clutter minors

Room B232 IBS (기초과학연구원)

Given a finite set of elements $V$ and a family $\mathcal{C}$ of subsets of $V$, the set covering problem is to find a minimum cardinality subset of $V$ intersecting every subset in the family $\mathcal{C}$. The set covering problem, also known as the hitting set problem, admits a simple integer linear programming formulation. The constraint

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.