We confirm a conjecture of Gartland and Lokshtanov : if for a hereditary graph class $\mathcal{G}$ there exists a constant $k$ such that no member of $\mathcal{G}$ contains a $k$-creature as an induced subgraph or a $k$-skinny-ladder as an induced minor, then there exists a polynomial $p$ such that every $G \in \mathcal{G}$ contains at …
Virtual Discrete Math Colloquium
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Random walks and spectral methods have had a strong influence on modern graph algorithms as evidenced by the extensive literature on the subject. In this talk, I will present how random walks helped make progress on algorithmic problems on planar graphs. In particular, I show how random walk based (i.e., spectral) approaches led to progress … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
A conjecture of Milena Mihail and Umesh Vazirani states that the edge expansion of the graph of every $0/1$ polytope is at least one. Any lower bound on the edge expansion gives an upper bound for the mixing time of a random walk on the graph of the polytope. Such random walks are important because they can be used … |
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
I will present the short proof from that for every digraph F and every assignment of pairs of integers $(r_e,q_e)_{e\in A(F)}$ to its arcs, there exists an integer $N$ such that every digraph D with dichromatic number at least $N$ contains a subdivision of $F$ in which $e$ is subdivided into a directed path of … |
0 events,
|
0 events,
|
0 events,
|

