A pure pair in a graph G is a pair of subsets A, B of the vertex set of G such that in G, either all of the edges or none of the edges between A and B are present. Pure pairs have been studied recently motivated by their connections to the Erdos-Hajnal conjecture. In …
Virtual Discrete Math Colloquium
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
For a graph G and an integer d, the dth power of G is the graph $G^d$ on the same vertex set as G where two vertices are considered adjacent if and only if they are at distance at most d in G. Assuming that G is sparse, what can we say about the structure … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
A graph $G$ is semilinear of bounded complexity if the vertices of $G$ are elements of $\mathbb{R}^{d}$, and the edges of $G$ are defined by the sign patterns of $t$ linear functions, where $d$ and $t$ are constants. In this talk, I will present several results about the symmetric and asymmetric Ramsey properties of semilinear … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Traditional clustering identifies groups of objects that share certain qualities. Tangles do the converse: they identify groups of qualities that typically occur together. They can thereby discover, relate, and structure types: of behaviour, political views, texts, or proteins. Tangles offer a new, quantitative, paradigm for grouping phenomena rather than things. They can identify key phenomena … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|

