In the "cake partition" problem n players have each a list of preferred parts for any partition of the interval ("cake") into n sub-intervals. Woodall, Stromquist and Gale proved independently that under mild conditions on the list of preferences (like continuity) there is always a partition and assignment of parts to the players, in which every player gets …
35 events found.
Virtual Discrete Math Colloquium
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
We prove a conjecture of Boros, Caro, Furedi and Yuster on the maximum number of edges in a 2-connected graph without repeated cycle lengths, which is a restricted version of a longstanding problem of Erdos. Our proof together with the matched lower bound construction of Boros, Caro, Furedi and Yuster show that this problem can … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
This talk considers the following question at the intersection of extremal and structural graph theory: What is the maximum number of copies of a fixed forest $T$ in an $n$-vertex graph in a graph class $\mathcal{G}$ as $n\to \infty$? I will answer this question for a variety of sparse graph classes $\mathcal{G}$. In particular, we show that the answer is … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|

