Lars Jaffke, Taming graphs with no large creatures and skinny ladders
Zoom ID: 869 4632 6610 (ibsdimag)We confirm a conjecture of Gartland and Lokshtanov : if for a hereditary graph class $\mathcal{G}$ there exists a constant $k$ such that no member of $\mathcal{G}$ contains a $k$-creature as an induced subgraph or a $k$-skinny-ladder as an induced minor, then there exists a polynomial $p$ such that every $G \in \mathcal{G}$ contains at …