• Stijn Cambie, Recent progress on the Union-closed conjecture and related

    Room B332 IBS (기초과학연구원)

    We give a summary on the work of the last months related to Frankl's Union-Closed conjecture and its offsprings. The initial conjecture is stated as a theorem in extremal set theory; when a family F is union-closed (the union of sets of F is itself a set of $\mathcal F$), then $\mathcal F$ contains an

  • Younjin Kim (김연진), Problems on Extremal Combinatorics

    Room B332 IBS (기초과학연구원)

    Extremal Combinatorics studies the maximum or minimum size of finite objects (numbers, sets, graphs) satisfying certain properties. In this talk, I introduce the conjectures I solved on Extremal Combinatorics, and also introduce recent extremal problems.

  • Tianchi Yang, On the maximum number of edges in k-critical graphs

    Room B332 IBS (기초과학연구원)

    In this talk, we will discuss the problem of determining the maximum number of edges in an n-vertex k-critical graph. A graph is considered k-critical if its chromatic number is k, but any proper subgraph has a chromatic number less than k. The problem remains open for any integer k ≥ 4. Our presentation will

  • István Tomon, Configurations of boxes

    Room B332 IBS (기초과학연구원)

    Configurations of axis-parallel boxes in $\mathbb{R}^d$ are extensively studied in combinatorial geometry. Despite their perceived simplicity, there are many problems involving their structure that are not well understood. I will talk about a construction that shows that their structure might be more complicated than people conjectured.

  • James Davies, Two structural results for pivot-minors

    Room B332 IBS (기초과학연구원)

    Pivot-minors can be thought of as a dense analogue of graph minors. We shall discuss pivot-minors and two recent results for proper pivot-minor-closed classes of graphs. In particular, that for every graph H, the class of graphs containing no H-pivot-minor is 𝜒-bounded, and also satisfies the (strong) Erdős-Hajnal property.

  • Hyunwoo Lee (이현우), On perfect subdivision tilings

    Room B332 IBS (기초과학연구원)

    For a given graph $H$, we say that a graph $G$ has a perfect $H$-subdivision tiling if $G$ contains a collection of vertex-disjoint subdivisions of $H$ covering all vertices of $G.$ Let $\delta_{sub}(n, H)$ be the smallest integer $k$ such that any $n$-vertex graph $G$ with minimum degree at least $k$ has a perfect $H$-subdivision

  • Rob Morris, An exponential improvement for diagonal Ramsey

    Room B332 IBS (기초과학연구원)

    The Ramsey number $R(k)$ is the minimum n such that every red-blue colouring of the edges of the complete graph on n vertices contains a monochromatic copy of $K_k$. It has been known since the work of Erdős and Szekeres in 1935, and Erdős in 1947, that $2^{k/2} < R(k) < 4^k$, but in the

  • Jozef Skokan, Separating the edges of a graph by a linear number of paths

    Room B332 IBS (기초과학연구원)

    Recently, Letzter proved that any graph of order n contains a collection P of $O(n \log^*n)$ paths with the following property: for all distinct edges e and f there exists a path in P which contains e but not f. We improve this upper bound to 19n, thus answering a question of Katona and confirming

  • Oliver Janzer, Small subgraphs with large average degree

    Room B332 IBS (기초과학연구원)

    We study the fundamental problem of finding small dense subgraphs in a given graph. For a real number $s>2$, we prove that every graph on $n$ vertices with average degree at least $d$ contains a subgraph of average degree at least $s$ on at most $nd^{-\frac{s}{s-2}}(\log d)^{O_s(1)}$ vertices. This is optimal up to the polylogarithmic

  • Suyun Jiang (江素云), How connectivity affects the extremal number of trees

    Room B332 IBS (기초과학연구원)

    The Erdős-Sós conjecture states that the maximum number of edges in an $n$-vertex graph without a given $k$-vertex tree is at most $\frac {n(k-2)}{2}$. Despite significant interest, the conjecture remains unsolved. Recently, Caro, Patkós, and Tuza considered this problem for host graphs that are connected. Settling a problem posed by them, for a $k$-vertex tree