Dirac's theorem determines the sharp minimum degree threshold for graphs to contain perfect matchings and Hamiltonian cycles. There have been various attempts to generalize this theorem to hypergraphs with larger uniformity by considering hypergraph matchings and Hamiltonian cycles. We consider another natural generalization of the perfect matchings, Steiner triple systems. As a Steiner triple system …
Discrete Math Seminar
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
1 event,
-
For $d\ge 2$ and an odd prime power $q$, let $\mathbb{F}_q^d$ be the $d$-dimensional vector space over the finite field $\mathbb{F}_q$. The distance between two points $(x_1,\ldots,x_d)$ and $(y_1,\ldots,y_d)$ is defined to be $\sum_{i=1}^d (x_i-y_i)^2$. An influential result of Iosevich and Rudnev is: if $E \subset \mathbb{F}_q^d$ is sufficiently large and $t \in \mathbb{F}_q$, then … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
Given a set of lines in $\mathbb R^d$, a joint is a point contained in d linearly independent lines. Guth and Katz showed that N lines can determine at most $O(N^{3/2})$ joints in $\mathbb R^3$ via the polynomial method. Yu and I proved a tight bound on this problem, which also solves a conjecture proposed … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
A graph is $H$-Ramsey if every two-coloring of its edges contains a monochromatic copy of $H$. Define the $F$-Ramsey number of $H$, denoted by $r_F(H)$, to be the minimum number of copies of $F$ in a graph which is $H$-Ramsey. This generalizes the Ramsey number and size Ramsey number of a graph. Addressing a question … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
We present the KKM theorem and a recent proof method utilizing it that has proven to be very useful for problems in discrete geometry. For example, the method was used to show that for a planar family of convex sets with the property that every three sets are pierced by a line, there are three … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|

