In 1980, Burr conjectured that every directed graph with chromatic number $2k-2$ contains any oriented tree of order $k$ as a subdigraph. Burr showed that chromatic number $(k-1)^2$ suffices, which was improved in 2013 to $\frac{k^2}{2} - \frac{k}{2} + 1$ by Addario-Berry et al. In this talk, we give the first subquadratic bound for Burr's …
Seminars and Colloquiums
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
1 event,
-
An edge-colored graph $H$ is called rainbow if all of its edges are given distinct colors. An edge-colored graph $G$ is then called rainbow $H$-free when no copy of $H$ in $G$ is rainbow. With this, we define a graph $G$ to be rainbow $H$-saturated when there is some proper edge-coloring of $G$ which is rainbow $H$-free, … |
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
We prove the following variant of Helly’s classical theorem for Hamming balls with a bounded radius. For $n > t$ and any (finite or infinite) set $X$, if in a family of Hamming balls of radius $t$ in $X$, every subfamily of at most $2^{t+1}$ balls have a common point, so do all members of … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
We say that a 0-1 matrix A contains another such matrix (pattern) P if P can be obtained from a submatrix of A by possibly changing a few 1 entries to 0. The main question of this theory is to estimate the maximal number of 1 entries in an n by n 0-1 matrix NOT … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|

