Take a prime power $q$, an integer $n\geq 2$, and a coordinate subspace $S\subseteq GF(q)^n$ over the Galois field $GF(q)$. One can associate with $S$ an $n$-partite $n$-uniform clutter $\mathcal{C}$, where every part has size $q$ and there is a bijection between the vectors in $S$ and the members of $\mathcal{C}$. In this paper, we …
Seminars and Colloquiums
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
In 1986, Robertson and Seymour proved a generalization of the seminal result of Erdős and Pósa on the duality of packing and covering cycles: A graph has the Erdős-Pósa property for minor if and only if it is planar. In particular, for every non-planar graph $H$ they gave examples showing that the Erdős-Pósa property does … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
The square of a graph $G$, denoted $G^2$, has the same vertex set as $G$ and has an edge between two vertices if the distance between them in $G$ is at most $2$. Wegner's conjecture (1977) states that for a planar graph $G$, the chromatic number $\chi(G^2)$ of $G^2$ is at most 7 if $\Delta(G) … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
Even delta-matroids generalize matroids, as they are defined by a certain basis exchange axiom weaker than that of matroids. One natural example of even delta-matroids comes from a skew-symmetric matrix over a given field $K$, and we say such an even delta-matroid is representable over the field $K$. Interestingly, a matroid is representable over $K$ … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
Graph pebbling is a combinatorial game played on an undirected graph with an initial configuration of pebbles. A pebbling move consists of removing two pebbles from one vertex and placing one pebbling on an adjacent vertex. The pebbling number of a graph is the smallest number of pebbles necessary such that, given any initial configuration … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|

