Given a cardinal $\lambda$, a $\lambda$-packing of a graph $G$ is a family of $\lambda$ many edge-disjoint spanning trees of $G$, and a $\lambda$-covering of $G$ is a family of spanning trees covering $E(G)$.We show that if a graph admits a $\lambda$-packing and a $\lambda$-covering then the graph also admits a decomposition into $\lambda$ many spanning …
Seminars and Colloquiums
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
On page 335 in his lost notebook, Ramanujan recorded without proofs two identities involving finite trigonometric sums and doubly infinite series of Bessel functions. We proved each of these identities under three different interpretations for the double series, and showed that they are intimately connected with the classical circle and divisor problems in number theory. … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
It is a classic result that the maximum weight stable set problem is efficiently solvable for bipartite graphs. The recent bimodular algorithm of Artmann, Weismantel and Zenklusen shows that it is also efficiently solvable for graphs without two disjoint odd cycles. The complexity of the stable set problem for graphs without $k$ disjoint odd cycles is … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
Let $F$ be a graph. We say that a hypergraph $\mathcal H$ is an induced Berge $F$ if there exists a bijective mapping $f$ from the edges of $F$ to the hyperedges of $\mathcal H$ such that for all $xy \in E(F)$, $f(xy) \cap V(F) = \{x,y\}$. In this talk, we show asymptotics for the maximum number of … |
0 events,
|
1 event,
-
Haviv (European Journal of Combinatorics, 2019) has recently proved that some topological lower bounds on the chromatic number of graphs are also lower bounds on their orthogonality dimension over $\mathbb {R}$. We show that this holds actually for all known topological lower bounds and all fields. We also improve the topological bound he obtained for … |
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|

