Ferdinand Ihringer, Boolean Functions Analysis in the Grassmann Graph
Tuesday, January 13, 2026 @ 4:30 PM - 5:30 PM KST
Boolean function analysis for the hypercube $\{ 0, 1 \}^n$ is a well-developed field and has many famous results such as the FKN Theorem or Nisan-Szegedy Theorem. One easy example is the classification of Boolean degree $1$ functions: If $f$ is a real, $n$-variate affine function which is Boolean on the $n$-dimensional hypercube (that is, $f(x) \in \{ 0, 1 \}$ for $x \in \{ 0, 1 \}^n$), then $f(x) = 0$, $f(x) = 1$, $f(x) = x_i$ or $f(x) = 1 – x_i$. The same classification (essentially) holds if we restrict $\{ 0, 1\}^n$ to elements with Hamming weight $k$ if $n-k, k \geq 2$. If we replace $k$-sets of $\{ 1, \ldots, n \}$ by $k$-spaces in $V(n, q)$, the $n$-dimensional vector space over the field with $q$ elements, then suddenly even the simple question of classifying Boolean degree $1$ functions, here traditionally known as Cameron-Liebler classes, becomes seemingly hard to solve.
We will discuss some results on low-degree Boolean functions in the vector space setting. Most notably, we will discuss how vector space Ramsey numbers, so extremal combinatorics, can be utilized in this finite geometrical setting.

