Loading Events

« All Events

  • This event has passed.
:

Szymon Toruńczyk, Flip-width: Cops and Robber on dense graphs

Wednesday, May 17, 2023 @ 4:00 PM - 5:00 PM KST

Zoom ID: 869 4632 6610 (ibsdimag)

We define new graph parameters, called flip-width, that generalize treewidth, degeneracy, and generalized coloring numbers for sparse graphs, and clique-width and twin-width for dense graphs. The flip-width parameters are defined using variants of the Cops and Robber game, in which the robber has speed bounded by a fixed constant r∈N∪{∞}, and the cops perform flips (or perturbations) of the considered graph. We then propose a new notion of tameness of a graph class, called bounded flip-width, which is a dense counterpart of classes of bounded expansion of Nešetril and Ossona de Mendez, and includes classes of bounded twin-width of Bonnet, Kim, Thomassé, and Watrigant. This unifies Sparsity Theory and Twin-width Theory, providing a common language for studying the central notions of the two theories, such as weak coloring numbers and twin-width — corresponding to winning strategies of one player — or dense shallow minors, rich divisions, or well-linked sets, corresponding to winning strategies of the other player. We prove that boundedness of flip-width is preserved by first-order interpretations, or transductions, generalizing previous results concerning classes of bounded expansion and bounded twin-width. We provide an algorithm approximating the flip-width of a given graph, which runs in slicewise polynomial time (XP) in the size of the graph. Finally, we propose a more general notion of tameness, called almost bounded flip-width, which is a dense counterpart of nowhere dense classes. We conjecture, and provide evidence, that classes with almost bounded flip-width coincide with monadically dependent (or monadically NIP) classes, introduced by Shelah in model theory. We also provide evidence that classes of almost bounded flip-width characterise the hereditary graph classes for which the model-checking problem is fixed-parameter tractable.

Details

Date:
Wednesday, May 17, 2023
Time:
4:00 PM - 5:00 PM KST
Event Category:
Event Tags:

Venue

Zoom ID: 869 4632 6610 (ibsdimag)

Organizer

O-joung Kwon (권오정)
IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.