We show that for pairs (Q,R) and (S,T) of disjoint subsets of vertices of a graph G, if G is sufficiently large, then there exists a vertex v in V(G)−(Q∪R∪S∪T) such that there are two ways to reduce G by a vertex-minor operation while preserving the connectivity between Q and R and the connectivity between S …
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
We call an induced cycle of length at least four a hole. The parity of a hole is the parity of its length. Forbidding holes of certain types in a graph has deep structural implications. In 2006, Chudnovksy, Seymour, Robertson, and Thomas famously proved that a graph is perfect if and only if it does not contain … |
1 event,
-
Twin-width is a new parameter informally measuring how diverse are the neighbourhoods of the graph vertices, and it extends also to other binary relational structures, e.g. to digraphs and posets. It was introduced quite recently, in 2020 by Bonnet, Kim, Thomassé, and Watrigant. One of the core results of these authors is that FO model checking on graph classes of … |
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
The Weighted $\mathcal F$-Vertex Deletion for a class $\mathcal F$ of graphs asks, given a weighted graph $G$, for a minimum weight vertex set $S$ such that $G-S\in\mathcal F$. The case when $\mathcal F$ is minor-closed and excludes some graph as a minor has received particular attention but a constant-factor approximation remained elusive for Weighted $\mathcal … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
A signed graph is a pair $(G,\Sigma)$ where $G$ is a graph and $\Sigma$ is a subset of edges of $G$. A cycle $C$ of $G$ is a subset of edges of $G$ such that every vertex of the subgraph of $G$ induced by $C$ has an even degree. We say that $C$ is even … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|

