The cut-rank of a set X of vertices in a graph G is defined as the rank of the X×(V(G)∖X) matrix over the binary field whose (i,j)-entry is 1 if the vertex i in X is adjacent to the vertex j in V(G)∖X and 0 otherwise. We introduce the graph parameter called the average cut-rank …
Calendar of Events
S
Sun
|
M
Mon
|
T
Tue
|
W
Wed
|
T
Thu
|
F
Fri
|
S
Sat
|
---|---|---|---|---|---|---|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Computationally hard problems have been widely used to construct cryptographic primitives such as encryptions, digital signatures. For example, provably secure primitives are based on a reduction from the hardness problems. However, the concrete instantiation of primitives does not follow the results of hardness problems due to its efficiency. In this talk, we introduce cryptographic hardness … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
The fractional Helly theorem is a simple yet remarkable generalization of Helly's classical theorem on the intersection of convex sets, and it is of considerable interest to extend the fractional Helly theorem beyond the setting of convexity. In this talk I will discuss a recent result which shows that the fractional Helly theorem holds for families … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
Pósa's theorem states that any graph G whose degree sequence |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
1 event,
-
A weak order is a way to rank n objects where ties are allowed. Weak orders have applications in diverse areas such as linguistics, designing combination locks, and even in horse racing. In this talk, we present new and simple algorithms to generate Gray codes and universal cycles for weak orders. |
0 events,
|
0 events,
|
0 events,
|
0 events,
|