Since the development of the first randomized polynomial-time algorithm for volume computation by Dyer, Frieze, and Kannan in 1989, convex-body sampling has been a central problem at the intersection of algorithms, geometry, and probability. A major milestone came in 1997, when Kannan, Lovász, and Simonovits analyzed the Ball Walk and formulated the influential KLS conjecture. …
Calendar of Events
|
Sunday
|
Monday
|
Tuesday
|
Wednesday
|
Thursday
|
Friday
|
Saturday
|
|---|---|---|---|---|---|---|
|
0 events,
|
0 events,
|
1 event,
-
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
In , Fabianski et. al. developed a simple, yet surprisingly powerful algorithmic framework to develop efficient parameterized graph algorithms. Notably they derive a simple parameterized algorithm for the dominating set problem on a variety of graph classes, including powers of nowhere dense classes and biclique-free classes. These results encompass a wide range of previously known … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
Boolean function analysis for the hypercube $\{ 0, 1 \}^n$ is a well-developed field and has many famous results such as the FKN Theorem or Nisan-Szegedy Theorem. One easy example is the classification of Boolean degree $1$ functions: If $f$ is a real, $n$-variate affine function which is Boolean on the $n$-dimensional hypercube (that is, … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
-
The planar separator theorem by Lipton and Tarjan states that any planar graph with $n$ vertices has a balanced separator of size $O(\sqrt{n})$ that can be found in linear time. This landmark result kicked off decades of research on designing linear or nearly linear-time algorithms on planar graphs. In an attempt to generalize Lipton-Tarjan's theorem … |
0 events,
|
0 events,
|
0 events,
|
0 events,
|
|
0 events,
|
0 events,
|
1 event,
|
0 events,
|
0 events,
|
0 events,
|
0 events,
|

