Daniel Cranston, Vertex Partitions into an Independent Set and a Forest with Each Component Small
Zoom ID: 869 4632 6610 (ibsdimag)For each integer
For each integer
Extending the classical theorem of Sperner on the maximum size of an antichain in the Boolean lattice, Katona and Tarján introduced a general extremal function
In this talk I will present a small result we achieved during a workshop in February this year. My coauthors on this are Marcin Pilipczuk, Paweł Komosa and Manuel Sorge. A bramble in an undirected graph
Shrub-depth is a graph invariant often considered as an extension of tree-depth to dense graphs. In this talk I will explain our recent proofs of two results about graphs of bounded shrub-depth. Every graph property definable in monadic-second order logic, e.g., 3-colorability, can be evaluated by Boolean circuits of constant depth and polynomial size, whose …
We introduce delta-graphic matroids, which are matroids whose bases form graphic delta-matroids. The class of delta-graphic matroids contains graphic matroids as well as cographic matroids and is a proper subclass of the class of regular matroids. We give a structural characterization of the class of delta-graphic matroids. We also show that every forbidden minor for …
In extremal graph theory, a graph G is H-saturated if G does not contain a copy of H but adding any missing edge to G creates a copy of H. The saturation number, sat(n, H), is the minimum number of edges in an n-vertex H-saturated graph. This class of problems was first studied by Zykov …
Ramsey's theorem states that, for a fixed graph
There has been much research on finding a large rainbow matching in a properly edge-colored graph, where a proper edge coloring is a coloring of the edge set such that no same-colored edges are incident. Barát, Gyárfás, and Sárközy conjectured that in every proper edge coloring of a multigraph (with parallel edges allowed, but not …
A graph
The study of Hamiltonian graphs, i.e. finite graphs having a cycle that contains all vertices of the graph, is a central theme of finite graph theory. For infinite graphs such a definition cannot work, since cycles are finite. We shall debate possible concepts of Hamiltonicity for infinite graphs and eventually follow the topological approach by …