• Mujin Choi (최무진), Excluding ladder and wheel as induced minor in graphs without induced stars

    Room B332 IBS (기초과학연구원)

    We prove that for all positive integers $k$ and $d$, the class of $K_{1,d}$-free graphs not containing the $k$-ladder or the $k$-wheel as an induced minor has a bounded tree-independence number. Our proof uses a generalization of the concept of brambles to tree-independence number. This is based on joint work with Claire Hilaire, Martin Milanič,

  • Rong Luo, Modulo flows and Integer flows of signed graphs

    Room B332 IBS (기초과학연구원)

    Nowhere-zero flows of unsigned graphs were introduced by Tutte in 1954 as a dual problem to vertex-coloring of (unsigned) planar graphs. The definition of nowhere-zero flows on signed graphs naturally comes from the study of embeddings of graphs in non-orientable surfaces, where nowhere-zero flows emerge as the dual notion to local tensions.  Nowhere-zero flows in

  • Marcelo Sales, On the Ramsey number of Daisies and other hypergraphs

    Room B332 IBS (기초과학연구원)

    Given a $k$-uniform hypergraph $H$, the Ramsey number $R(H;q)$ is the smallest integer $N$ such that any $q$-coloring of the edges of the complete $k$-uniform hypergraph on $N$ vertices contains a monochromatic copy of $H$. When $H$ is a complete hypergraph, a classical argument of Erdős, Hajnal, and Rado reduces the general problem to the

  • Ilkyoo Choi (최일규), An improved lower bound on the number of edges in list critical graphs via DP coloring

    Room B332 IBS (기초과학연구원)

    A graph $G$ is (list, DP) $k$-critical if the (list, DP) chromatic number is $k$ but for every proper subgraph $G'$ of $G$, the (list, DP) chromatic number of $G'$ is less than $k$. For $k\geq 4$, we show a bound on the minimum number of edges in a DP $k$-critical graph, and our bound

  • William Cook, Optimization via Branch Decomposition

    Room B332 IBS (기초과학연구원)

    Robertson and Seymour introduced branch-width as a connectivity invariant of graphs in their proof of the Wagner conjecture. Decompositions based on this invariant provide a natural framework for implementing dynamic-programming algorithms to solve graph optimization problems. We will discuss the computational issues involved in using branch-width as as a general tool in discrete optimization.

  • Jakob Greilhuber, A Dividing Line for Structural Kernelization of Component Order Connectivity via Distance to Bounded Pathwidth

    Room B332 IBS (기초과학연구원)

    Vertex Cover is perhaps the most-studied problem in parameterized complexity that frequently serves as a testing ground for new concepts and techniques. In this talk, I will focus on a generalization of Vertex Cover called Component Order Connectivity (COC). Given a graph G, an integer k and a positive integer d, the task is to

  • Simón Piga, Turán problem in hypergraphs with quasirandom links

    Room B332 IBS (기초과학연구원)

    Given a $k$-uniform hypergraph $F$, its Turán density $\pi(F)$ is the infimum over all $d\in $ such that any $n$-vertex $k$-uniform hypergraph $H$ with at least $d\binom{n}{k}+o(n^k)$ edges contains a copy of $F$. While Turán densities are generally well understood for graphs ($k=2$), the problem becomes notoriously difficult for $k\geq 3$, even for small hypergraphs.

  • Fedor Noskov, Polynomial dependencies in hypergraph Turan-type problems

    Room B332 IBS (기초과학연구원)

    Consider a general Turan-type problem on hypergraphs. Let $\mathcal{F}$ be a family of $k$-subsets of $$ that does not contain sets $F_1, \ldots, F_s$ satisfying some property $P$. We show that if $P$ is low-dimensional in some sense (e.g., is defined by intersections of bounded size) then, under polynomial dependencies between $n, k$ and the

  • Péter Pál Pach, Product representation of perfect cubes

    Room B332 IBS (기초과학연구원)

    Let $F_{k,d}(n)$ be the maximal size of a set ${A}\subseteq $ such that the equation \ has no solution with $a_1,a_2,\ldots,a_k\in A$ and integer $x$. Erdős, Sárközy and T. Sós studied $F_{k,2}$, and gave bounds when $k=2,3,4,6$ and also in the general case. We study the problem for $d=3$, and provide bounds for $k=2,3,4,6$ and