Joonkyung Lee (이준경), On common graphs
Zoom ID:8628398170 (123450)A graph
A graph
The study of Hamiltonian graphs, i.e. finite graphs having a cycle that contains all vertices of the graph, is a central theme of finite graph theory. For infinite graphs such a definition cannot work, since cycles are finite. We shall debate possible concepts of Hamiltonicity for infinite graphs and eventually follow the topological approach by …
I will go over the history on the study of the set of cycle lengths of graphs with large average degree or chromatic number, and discuss recent work with Richard Montgomery on this topic. In particular, we will see the divergence of harmonic sum of odd cycle lengths in graphs with large chromatic number and …
In this talk I will state a generalisation of the even directed cycle problem, which asks whether a given digraph contains a directed cycle of even length, to orientations of regular matroids. Motivated by this problem, I will define non-even oriented matroids generalising non-even digraphs, which played a central role in resolving the computational complexity of …
In combinatorics, Hopf algebras appear naturally when studying various classes of combinatorial objects, such as graphs, matroids, posets or symmetric functions. Given such a class of combinatorial objects, basic information on these objects regarding assembly and disassembly operations are encoded in the algebraic structure of a Hopf algebra. One then hopes to use algebraic identities of …
Given a graph G=(V,E), the independence complex of G is the abstract simplicial complex I(G) on V whose faces are the independent sets of G. A graph is ternary if it does not contain an induced cycle of length divisible by three. Kalai and Meshulam conjectured that if G is ternary then the sum of the Betti numbers …
In an n-vertex graph, there must be a clique or stable set of size at least
The canonical tree-decomposition theorem, proved by Robertson and Seymour in their seminal graph minors series, turns out to be an extremely valuable tool in structural and algorithmic graph theory. In this paper, we prove the analogous result for digraphs, the directed tangle tree-decomposition theorem. More precisely, we introduce directed tangles and provide a directed tree-decomposition …
The notion of convexity spaces provides a purely combinatorial framework for certain problems in discrete geometry. In the last ten years, we have seen some progress on several open problems in the area, and in this talk, I will focus on the recent results relating to Tverberg’s theorem and the Alon-Kleitman (p,q) theorem.
An immersion of a graph H into a graph G sends edges of H into edge-disjoint trails of G. We say the immersion is flooding if every edge of G is in one of the trails. Flooding immersions are interesting for Eulerian group-labelled graphs; in this context they behave quite differently from regular immersions. Moreover, …