The 3rd East Asia Workshop on Extremal and Structural Graph Theory

The Southern Beach Hotel & Resort Okinawa

The 3rd East Asia Workshop on Extremal and Structural Graph Theory is a workshop to bring active researchers in the field of extremal and structural graph theory, especially in the East Asia such as China, Japan, and Korea. Website: http://tgt.ynu.ac.jp/2023EastAsia.html

Bruce A. Reed, Some Variants of the Erdős-Sós Conjecture

Room B332 IBS (기초과학연구원)

Determining the density required to ensure that a host graph G contains some target graph as a subgraph or minor is a natural and well-studied question in extremal combinatorics. The celebrated 50-year-old Erdős-Sós conjecture states that for every k, if G has average degree exceeding k-2 then it contains every tree T with k vertices

Seunghun Lee (이승훈), On colorings of hypergraphs embeddable in $\mathbb{R}^d$

Room B332 IBS (기초과학연구원)

Given a hypergraph $H=(V,E)$, we say that $H$ is (weakly) $m$-colorable if there is a coloring $c:V\to $ such that every hyperedge of $H$ is not monochromatic. The (weak) chromatic number of $H$, denoted by $\chi(H)$, is the smallest $m$ such that $H$ is $m$-colorable. A vertex subset $T \subseteq V$ is called a transversal

Hyunwoo Lee (이현우), Towards a high-dimensional Dirac’s theorem

Room B332 IBS (기초과학연구원)

Dirac's theorem determines the sharp minimum degree threshold for graphs to contain perfect matchings and Hamiltonian cycles. There have been various attempts to generalize this theorem to hypergraphs with larger uniformity by considering hypergraph matchings and Hamiltonian cycles. We consider another natural generalization of the perfect matchings, Steiner triple systems. As a Steiner triple system

Ben Lund, Almost spanning distance trees in subsets of finite vector spaces

Room B332 IBS (기초과학연구원)

For $d\ge 2$ and an odd prime power $q$, let $\mathbb{F}_q^d$ be the $d$-dimensional vector space over the finite field $\mathbb{F}_q$. The distance between two points $(x_1,\ldots,x_d)$ and $(y_1,\ldots,y_d)$ is defined to be $\sum_{i=1}^d (x_i-y_i)^2$. An influential result of Iosevich and Rudnev is: if $E \subset \mathbb{F}_q^d$ is sufficiently large and $t \in \mathbb{F}_q$, then

Ting-Wei Chao (趙庭偉), Tight Bound on Joints Problem and Partial Shadow Problem

Room B332 IBS (기초과학연구원)

Given a set of lines in $\mathbb R^d$, a joint is a point contained in d linearly independent lines. Guth and Katz showed that N lines can determine at most $O(N^{3/2})$ joints in $\mathbb R^3$ via the polynomial method. Yu and I proved a tight bound on this problem, which also solves a conjecture proposed

Shengtong Zhang (张盛桐), Triangle Ramsey numbers of complete graphs

Room B332 IBS (기초과학연구원)

A graph is $H$-Ramsey if every two-coloring of its edges contains a monochromatic copy of $H$. Define the $F$-Ramsey number of $H$, denoted by $r_F(H)$, to be the minimum number of copies of $F$ in a graph which is $H$-Ramsey. This generalizes the Ramsey number and size Ramsey number of a graph. Addressing a question

Jinyoung Park (박진영), Dedekind’s Problem and beyond

Room B332 IBS (기초과학연구원)

The Dedekind's Problem asks the number of monotone Boolean functions, a(n), on n variables. Equivalently, a(n) is the number of antichains in the n-dimensional Boolean lattice $^n$. While the exact formula for the Dedekind number a(n) is still unknown, its asymptotic formula has been well-studied. Since any subsets of a middle layer of the Boolean

Matthew Kroeker, Average flat-size in complex-representable matroids

Room B332 IBS (기초과학연구원)

Melchior’s Inequality (1941) implies that, in a rank-3 real-representable matroid, the average number of points in a line is less than three. This was extended to the complex-representable matroids by Hirzebruch in 1983 with the slightly weaker bound of four. In this talk, we discuss and sketch the proof of the recent result that, in

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.