Category: Institution

  • Theorems covered in MAS575 Combinatorics Spring 2017

    This post will give an incomplete list of theorems covered in MAS575 Combinatorics Fall 2017. This post will be continuously updated throughout this semester. (Last update: April 5, 2017.)
    2017년 봄학기 MAS575 조합론 과목에서 다룬 정리들을 정리하였습니다. 빠진 것도 있습니다. 강의가 진행되면서 내용을 업데이트 하겠습니다.\(\newcommand\abs[1]{\lvert #1\rvert}\newcommand\F{\mathbb F}\newcommand\rk{\operatorname{rk}}\newcommand\per{\operatorname{per}}\)

    • Graham and Pollak (1971). Proof by Tverberg (1982)
      • The edge set $E(K_n)$ of the complete graph cannot be partitioned into less than $n-1$ copies of the edge sets of complete bipartite subgraphs.
    • Lindström and Smet (1970).
      • Let $A_1,A_2,\ldots,A_{n+1}\subseteq [n]$. Then there exist subsets $I$ and $J$ of $[n+1]$ such that \[ I\cup J\neq \emptyset, I\cap J=\emptyset, \text{ and }\bigcup_{i\in I}A_i =\bigcup_{j\in J} A_j.\]
    • Lindström (1993)
      • Let $A_1,A_2,\ldots,A_{n+2}\subseteq [n]$. Then there exist subsets $I$ and $J$ of $[n+2]$ such that $I\cup J\neq \emptyset$, $I\cap J=\emptyset$, and \[\bigcup_{i\in I} A_i=\bigcup_{j\in J}A_j\text{ and }\bigcap_{i\in I}A_i=\bigcap_{j\in J}A_j.\]
    • Larman, Rogers, and Seidel (1977) [New in 2017]
      • Every two-distance set in $\mathbb R^n$ has at most $\binom{n+2}{2}+n+1$ points. (A set of points is a two-distance set if the set of distances between distinct points has at most two values.)
    • Blokhuis (1984) [New in 2017]
      • Every two-distance set in $\mathbb R^n$ has at most $\binom{n+2}{2}$ points.
    • Erdős (1963)
      • Let $C_1,C_2,\ldots,C_m$ be the list of clubs and each club has at least $k$ members. If $m< 2^{k-1}$, then such an assignment of students into two lecture halls is always possible.
    • Erdős, Ko, and Rado (1961). Proof by Katona (1972)
      • Let $k\le n/2$. Let $\mathcal F$ be a $k$-uniform intersecting family of subsets of an $n$-set. Then \[|\mathcal F|\le\binom{n-1}{k-1}.\]
    • Fisher (1940), extended by Bose (1949). Related to de Brujin and Erdős (1948)
      • Let $k$ be a positive integer. Let $\mathcal F$ be a family on an $n$-set $S$ such that $|X\cap Y|=k$ whenever $X,Y\in \mathcal F$ and $X\neq Y$. Then $|\mathcal F|\le n$.
      • Corollary due to de Brujin and Erdős (1948):  Suppose that $n$ points are given on the plane so that not all are on one line. Then there are at least $n$ distinct lines through at least two of the $n$ points.
    • Frankl and Wilson (1981). Proof by Babai (1988).
      • If a family $\mathcal F$ of subsets of $[n]$ is $L$-intersecting and $|L|=s$, then \[|\mathcal F|\le \sum_{i=0}^s \binom{n}{i}.\]
    • Ray-Chaudhuri and Wilson (1975). Proof by Alon, Babai, and Suzuki (1991).
      • If a family $\mathcal F$ of subsets of $[n]$ is uniform $L$-intersecting and $|L|=s$, then \[|\mathcal F|\le \binom{n}{s}.\]  (A family of sets is \emph{uniform} if all members have the same size.)
    • Deza, Frankl, and Singhi (1983)
      • Let $p$ be a prime. Let $L\subseteq\{0,1,2,\ldots,p-1\}$ and $|L|=s$.If
        (i) $|A|\notin L+p\mathbb Z$ for all $A\in \mathcal F$,
        (ii) $|A\cap B|\in L+p\mathbb Z$ for all $A,B\in \mathcal F$, $A\neq B$,
        then \[|\mathcal F|\le \sum_{i=0}^s \binom{n}{i}.\]
    • Alon, Babai, and Suzuki (1991)
      • Let $p$ be a prime. Let $k$ be an integer. Let $L\subseteq \{0,1,2,\ldots,p-1\}$ and $|L|=s$. Assume $s+k\le n$. If
        (i) $|A|\equiv k \notin L+p\mathbb Z$ for all $A\in \mathcal F$,
        (ii) $|A\cap B|\in L+p\mathbb Z$ for all $A,B\in \mathcal F$, $A\neq B$,
        then \[|\mathcal F|\le \binom{n}{s}.\]
    • Grolmusz and Sudakov (2002) [New in 2017]
      • Let $p$ be a prime. Let $L\subseteq\{0,1,\ldots,p-1\}$ with $|L|=s$ and $k\ge 2$. Let $\mathcal F$ be a family of subsets of $[n]$ such that
        (i) $|A|\notin L+p\mathbb Z$ for all $A\in \mathcal F$ and
        (ii) $|A_1\cap A_2\cap \cdots \cap A_k|\in L+p\mathbb Z$ for every collection of $k$ distinct members $A_1,A_2,\ldots,A_k$ of $\mathcal F$.
        Then \[|\mathcal F|\le (k-1)\sum_{i=0}^s \binom{n}{i}.\]
    • Grolmusz and Sudakov (2002) [New in 2017]
      • Let $\abs{L}=s$ and $k\ge 2$. Let $\mathcal F$ be a family of subsets of $[n]$ such that \[|A_1\cap A_2\cap \cdots \cap A_k|\in L\] for every collection of $k$ distinct members $A_1,A_2,\ldots,A_k$ of $\mathcal F$. Then \[|\mathcal F|\le (k-1)\sum_{i=0}^s \binom{n}{i}.\]
    • Sperner (1928)
      • If $\mathcal F$ is an antichain of subsets of an $n$-set, then \[ |\mathcal F|\le \binom{n}{\lfloor n/2\rfloor}.\]
    • Lubell (1966), Yamamoto (1954), Meschalkin (1963)
      • If $\mathcal F$ is an antichain of subsets of an $n$-element set, then \[ \sum_{A\in \mathcal F} \frac1{\binom{n}{|A|}}\le 1.\]
    • Bollobás (1965)
      • Let $A_1$, $A_2$, $\ldots$, $A_m$, $B_1$, $B_2$, $\ldots$, $B_m$ be subsets on an $n$-set such that
        (a) $A_i\cap B_i=\emptyset$ for all $i\in[m]$,
        (b) $A_i\cap B_j\neq\emptyset$ for all $i\neq j$.
        Then\[\sum_{i=1}^m \frac1{\binom{|A_i|+|B_i|}{|A_i|}} \le 1.\]
    • Bollobás (1965), extending Erdős, Hajnal, and Moon (1964)
      • If each family of at most $\binom{r+s}{r}$ edges of an $r$-uniform hypergraph can be covered by $s$ vertices, then all edges can also be covered by $s$ vertices.
    • Lovász (1977)
      • Let $A_1$, $A_2$, $\ldots$, $A_m$, $B_1$, $B_2$, $\ldots$, $B_m$ be subsets such that $|A_i|=r$ and $|B_i|=s$ for all $i$ and
        (a) $A_i\cap B_i=\emptyset$ for all $i\in[m]$,
        (b) $A_i\cap B_j\neq\emptyset$ for all $i<j$.
        Then $m\le \binom{r+s}{r}$.
      • Let $W$ be a vector space over a field $\F$. Let $U_1,U_2,\ldots,U_m,V_1,V_2,\ldots,V_m$ be subspaces of $W$ such that $\dim(U_i)=r$ and $\dim(V_i)=s$ for each $i=1,2,\ldots,m$ and
        (a) $U_i\cap V_i=\{0\}$ for $i=1,2,\ldots,m$;
        (b) $U_i\cap V_j\neq\{0\}$ for $1\le i<j\le m$.
        Then $m\le \binom{r+s}{r}$.
    • Füredi (1984)
      • Let $U_1,U_2,\ldots,U_m,V_1,V_2,\ldots,V_m$ be subspaces of a vector space $W$ over a field $\F$. If $\dim(U_i)=r$, $\dim(V_i)=s$ for all $i\in\{1,2,\ldots,m\}$ and for some $t\ge 0$,
        (a) $\dim(U_i\cap V_i)\le t$ for all $i\in\{1,2,\ldots,m\}$,
        (b) $\dim(U_i\cap V_j)>t$ for all $1\le i<j\le m$,
        then $m\le \binom{r+s-2t}{r-t}$.
    • Frankl and Wilson (1981)
      • The chromatic number of the unit distance graph of $\mathbb R^n$ is larger than $1.2^n$ for sufficiently large $n$.
    • Kahn and Kalai (1993)
      • (Borsuk’s conjecture is false) Let $f(d)$ be the minimum number such that every set of diameter $1$ in $\mathbb R^d$ can be partitioned into $f(d)$ sets of smaller diameter. Then $f(d)> (1.2)^{\sqrt d}$ for large $d$.
    • Mehlhorn and Schmidt (1982) [New in 2017]
      • For a matrix C, $2^{\kappa(C)}\ge \operatorname{rank}(C)$. (Let $\kappa(C)$ be the minimum number of rounds in order to partition $C$ into almost homogeneous matrices, if in each round we can split each of the current submatrices into two either vertically or horizontally. This is a parameter related to the communication complexity.)
    • Lovász and Saks (1993)
      • $\kappa(C)\le \rk(C)$.
    •  ?
      • There exists a randomized protocol to decide the equality of two strings of length $n$ using $O(\log n)$ bits.
        The probablity of outputting an incorrect answer is less than $1/n$.
    • Dvir (2009) [New in 2017]
      • Let $f\in \F[x_1,\ldots,x_n]$ be a polynomial of degree at most $q-1$ over a finite field $\F$ with $q=\abs{F}$ elements. Let $K$ be a Kakeya set. If $f(x)=0$ for all $x\in K$, then $f$ is a zero polynomial.
      • If $K\subseteq\F^n$ is a Kakeya set, then \[\abs{K}\ge \binom{\abs{\F}+n-1}{n} \ge \frac{\abs{F}^n}{n!}.\]
    • Ellenberg and Gijswijt (2017) [New in 2017]
      • If $A$ is a subset of $\F_3^n$ with no three-term arithmetic progression, then $\abs{A}\le 3N$ where \[N=\sum_{a,b,c\ge 0; a+b+c=n; b+2c\le 2n/3} \frac{n!}{a! b! c!}.\]Furthermore $3N\le o(2.756^n)$.
    • Tao (2016) [New in 2017]
      • Let $k\ge 2$ and let $A$ be a finite set and $\F$ be a field. Let $f:A^k\to \F$ be a function such that if $f(x_1,x_2,\ldots,x_k)\neq 0$, then $x_1=x_2=\cdots=x_k$. Then the slice rank of $f$ is equal to $\abs{\{x: f(x,x,\ldots,x)\neq0\}}$.
    • Erdős and Rado (1960) [New in 2017]
      • There is a function $f(k,r)$ on positive integers $k$ and $r$ such that every family of $k$-sets with more than $f(k,r)$ members contains a sunflower of size $r$.
    • Naslund and Sawin (2016) [New in 2017]
      • Let $\mathcal F$ be a family of subsets of $[n]$ having no sunflower of size $3$. Then \[\abs{\mathcal F}\le 3(n+1)\sum_{k\le n/3}\binom{n}{k}.\]
    • Alon and Tarsi (1992)
      • Let $\F$ be a field and let $f\in \F[x_1,x_2,\ldots,x_n]$. Suppose that $\deg(f)=d=\sum_{i=1}^n d_i$ and the coefficient of $\prod_{i=1}^n x_i^{d_i}$ is nonzero. Let $L_1,L_2,\ldots,L_n$ be subsets of $\F$ such that $|L_i|>d_i$. Then there exist $a_1\in L_1$, $a_2\in L_2$, $\ldots$, $a_n\in L_n$ such that \[ f(a_1,a_2,\ldots,a_n)\neq 0.\]
    • Cauchy (1813), Davenport (1935)
      • Let $p$ be a prime and let $A,B$ be two nonempty subsets of $\mathbb{Z}_p$. Then \[|A+B|\ge \min(p,|A|+|B|-1).\]
    • Dias da Silva and Hamidoune (1994). A proof by Alon, Nathanson, and Ruzsa (1995). Conjecture of Erdős and Heilbronn (1964).
      • Let $p$ be a prime and $A$ be a nonempty subset of $\mathbb{Z}_p$. Then \[ \lvert\{ a+a’: a,a’\in A, a\neq a’\}\rvert \ge \min(p,2|A|-3).\]
    • Alon (2000)  [New in 2017]
      • Let $p$ be an odd prime. For $k< p$ and every integers $a_1,a_2,\ldots,a_k,b_1,b_2,\ldots,b_k$,  if $b_1,b_2,\ldots,b_k$ are distinct, then there exists a permutation $\pi$ of $\{1,2,\ldots,k\}$ such that the sums $a_i+b_{\pi(i)}$ are distinct.
    • Alon? [New in 2017]
      • If $A$ is an $n\times n$ matrix over a field $\F$, $\per(A)\neq 0$ and $b\in \F^n$,  then for every family of sets $L_1$, $L_2$, $\ldots$, $L_n$ of size $2$ each, there is a vector $x\in L_1\times L_2\times \cdots\times L_n$ such that \[(Ax)_i\neq b_i\] for all $i$.
    • Alon? [New in 2017]
      • Let $G$ be a bipartite graph with the bipartition $A$, $B$ with $\abs{A}=\abs{B}=n$. Let $B=\{b_1,b_2,\ldots,b_n\}$. If $G$ has at least one perfect matching, then for every integer $d_1,d_2,\ldots,d_n$,  there exists a subset $X$ of $A$ such that for each $i$, the number of neighbors of $b_i$ in $X$ is not $d_i$.
    • Erdős, Ginzburg, and Ziv (1961) [New in 2017]
      • Let $p$ be a prime. Every sequence $a_1,a_2,\ldots,a_{2p-1}$ of integers contains a subsequence $a_{i_1}$, $a_{i_2}$, $\ldots$, $a_{i_p}$ such that  $a_{i_1}+a_{i_2}+\cdots a_{i_p}\equiv 0\pmod p$.
    • Alon, Friedland, and Kalai (1984) [New in 2017]
      • Every (multi)graph with average degree $>4$ and maximum degree $\le 5$ contains a $3$-regular subgraph.
    • ?
      • Let $G$ be an undirected graph. Let $d(G)=\max_{H\subseteq G}\frac{|E(H)|}{|V(H)|}$. Then there is an orientation of $G$ such that the outdegree of each vertex is at most $\lceil d(G)\rceil$.
    • Alon and Tarsi (1992)
      • A simple planar bipartite graph is $3$-choosable.
  • KAIST에서 2017년 봄에 열리는 이산수학/그래프이론 관련 교과목

    2017년 봄학기 수강신청 기간이 다가왔습니다. 이번 학기에도 여러 이산수학/그래프이론 관련 교과목이 열릴 예정입니다. 수강신청에 참고할 수 있도록 정리해봅니다.

    MAS275 Discrete Mathematics (이산수학). 화목 14:30~16:00, 김동수 교수.

    • 매년 봄학기마다 열리고 특별한 선수과목이 없습니다. 조합적 사고를 잘 할 수 있도록 도와주기 때문에 다른 과목을 듣기 전에 이 과목은 반드시 듣는 것을 추천합니다.

    MAS487 Discrete Geometry (이산기하) 화목 13:00~14:30, Andreas Holmsen 교수.

    • 2년~3년 정도 주기로 열리고 있는 과목입니다. 국내에서는 KAIST에서만 볼 수 있는 과목으로 이산기하 전공하신 교수님으로부터 잘 배울 수 있습니다. 흥미로운 증명과 주제들이 많습니다. 마지막으로 열린 것은 2014년 봄입니다. 특별한 선수과목은 없지만 이산수학을 들어두었으면 수학적 내공이 충분하지 않을까 생각됩니다.
    • 강의 설명:This course is an introduction to discrete geometry. We will cover basic results from packing and covering, convex polytopes, intersection patterns of convex sets, and combinatorial geometry. Our goal is to reach some key results by combining methods from linear algebra, topology, and probability. However, since this is an introductory course, all necessary notions will be introduced. The main prerequisite for this course is a basic understanding of elementary discrete mathemtaics and the n-dimensional Euclidean space.
    • 교재: Jiří Matoušek, Lectures on Discrete Geometry (Springer, GTM 212). http://link.springer.com/book/10.1007%2F978-1-4613-0039-7
      • KAIST 교내에서는 위 링크를 통해 Springer에서 책을 온라인으로 볼 수 있습니다.

    MAS480 수학특강 Algebraic Graph Theory (대수적 그래프이론), 월수 13:00~14:30, Brendan Rooney 교수.

    • 교재: Chris Godsil, Gordon Royle, Algebraic Graph Theory, Sringer, GTM 207. http://link.springer.com/book/10.1007/978-1-4613-0163-9
      • KAIST 교내에서는 위 링크를 통해 Springer에서 책을 온라인으로 볼 수 있습니다.
    • KAIST에서는 적어도 최근 10년간은 열린 적이 없는 과목이고 앞으로도 언제 다시 열릴지 알 수 없는 과목입니다. Algebraic Graph Theory를 전공하였고 교재의 저자인 Chris Godsil 교수로부터 박사학위를 받은 Brendan Rooney 교수님이 강의하실 예정이라 기대가 됩니다.
    • 중요한 선수과목은 선형대수학개론 혹은 선형대수학입니다. 행렬의 eigenvalue 관련된 내용을 숙지하고 spectral decomposition 같은 것들도 잘 알고 있으면 좋습니다.

    MAS575 Combinatorics (조합수학), 화목 10:30~12:00, 엄상일.

    • 주교재: S. Jukna, Extremal Combinatorics, Springer-Verlag http://link.springer.com/book/10.1007%2F978-3-642-17364-6
      • KAIST 교내에서는 위 링크를 통해 Springer에서 책을 온라인으로 볼 수 있습니다.
    • 여러 기술들이 조합수학의 정리를 증명하는데 어떻게 활용되는지 다양하게 살펴봅니다. 선형대수 활용하는 방법, 다항식의 성질을 활용하는 방법, 램지 정리 관련, 확률을 활용하는 방법 등 다양한 주제를 다룹니다. 이산수학, 선형대수학개론을 수강한 학생이 듣는 것이 좋으며 가을마다 열리는 그래프이론개론을 수강했었다면 좀더 수월할 수도 있지만 내용은 독립적입니다.
    • 2년마다 한 번씩 봄에 열리며, 학부생이나 대학원생 모두 수강 가능합니다.

    MAS583C 수학특론 Parameterized Algorithms and Lower Bounds (매개변수 고정 알고리즘과 하한), 수 16:00~17:30, 금 10:30~12:00, Helmut Alt 교수 및 Otfried Cheong 교수

    • 전산학과 CS700과 교차개설된 과목입니다. 강의실도 전산학부 건물에서 열립니다. 독일 베를린자유대학 Helmut Alt 교수님이 KAIST 오셔서 강의하십니다.
    • 강의홈페이지: http://otfried.org/courses/cs700spring2017/
    • 비슷한 과목은 2014년 봄에 수리과학과에서 제가 MAS583B Fixed-Parameter Algorithms라는 제목으로 연 적이 있습니다. 내용은 비슷하지 않을까 생각합니다. 그래프이론과도 관련이 많고 제 연구와도 관련이 많습니다.
    • 교재: Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh, Parameterized Algorithms, Springer. http://link.springer.com/book/10.1007/978-3-319-21275-3
      • KAIST 교내에서는 위 링크를 통해 Springer에서 책을 온라인으로 볼 수 있습니다.