예전에 이산수학/그래프이론 관련 교과목을 정리해서 올린 적이 있었습니다. 타 학과 특강으로 개설된 교과목을 눈여겨 보지 않을 가능성이 있어서 정리해봅니다.
MAS.40077 Introduction to Graph Theory 그래프이론개론
화목 13:00-14:15 김재훈 (Jaehoon Kim)
매년 가을마다 열리는 과목입니다. MAS275나 CS204 등 이산수학 과목을 먼저 수강한 후에 듣는 것을 추천합니다.
CS.49900 Special Topics in Computer Science <Algorithmic Graph Structure Theory>
월수 13:00-14:15 Sebastian Wiederrecht
그래프의 Tree-width, Branch-width, Tree-Independence Number, Clique-width, Rank-width, Directed Tree-width 등을 다룹니다. 실라버스를 보니 제 논문에 있는 Rank-width 관련 알고리듬도 다룰 듯 합니다.
I’ve decided to move MAS275 Discrete Mathematics online to Zoom for the first few weeks. If you are one of the registered students, then please check the Zoom link at the KLMS.
In recent years, KAIST, one of the top research universities in Korea, has been recruiting distinguished scholars of both Korean and foreign nationalities. KAIST is located in Daejeon, a city with a population of 1.5 million, and its operation is financially supported by the Korean government. Most of the courses at KAIST are taught in English.
Applications are accepted from any areas of pure, applied, and interdisciplinary mathematics including artificial intelligence (AI) and data science. Successful applicants must demonstrate outstanding accomplishments or potential in research and teaching.
An internationally competitive salary commensurate with qualifications will be offered with attractive remuneration packages including relocation assistance, a start-up grant for research, health insurance, and housing benefit. The regular teaching load is two courses for the first year, and three courses a year thereafter.
All applications must include the following:
KAIST faculty application form (A separate paper for major achievements, teaching plan, and research accomplishments is acceptable.)
Cover letter (An AMS standard cover sheet is acceptable. The names of three (3) recommenders must be listed therein.)
Curriculum vitae with a publication list
Research statement of previous work and future plans
Teaching statement of previous work and future plans
A minimum of three (3) recommendation letters (Recommenders should send their letters directly to the email address below.)
After the screening process, candidates may need to submit additional documents.
All applications should be sent to recruit@mathsci.kaist.ac.kr or to the mailing address below by Thursday, September 30, 2021:
Jaeyoung Byeon Head of the Department of Mathematical Sciences KAIST 291 Daehak-ro, Yuseong-gu,
The Department of Mathematical Sciences at KAIST invites applications for a non-tenure track faculty position beginning from September 1, 2019.
In recent years, KAIST, one of the top research universities in Korea, has been recruiting distinguished scholars of both Korean and foreign nationalities. KAIST is located in Daejeon, a city with a population of 1.5 million, and its operation is financially supported by the Korean government. Most of the courses at KAIST are taught in English.
Applications are accepted from any areas of pure, applied, and interdisciplinary mathematics. Successful applicants must demonstrate outstanding accomplishments or potential in research and teaching.
An annual salary (between 50 to 60 million Korean won) will be commensurate with the experience and qualifications of candidates. The regular teaching load is two courses (at least 6 credits) per semester.
All applications must include the following:
KAIST non-tenure track faculty application form (DOC file)
Curriculum vitae with a publication list
Two recommendation letters; at least one should be related to teaching. (Recommenders should send their letters directly to the email address below.)
All applications should be sent to recruit@mathsci.kaist.ac.kr or to the mailing address below by Friday, May 17, 2019:
Yongnam Lee Head of the Department of Mathematical Sciences KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea Zip Code: 34141
2017년 가을학기 교과목 수강신청기간을 맞이하여 지난 학기에 하였던 것처럼 이번 2017년 가을학기에 열릴 이산수학/그래프이론 관련 교과목 및 기타 흥미로운 교과목을 정리해봅니다.
MAS477 Introduction to Graph Theory (그래프이론개론). 월수 13:00~14:15, 엄상일
(네, 아시다시피 제가 하는 과목입니다.) 보통 매년 가을학기에 열렸으며 제가 연구년을 갔던 2013년에는 Andreas Holmsen 교수님이 강의를 하셨었고 작년에는 대수적 그래프이론 전공한 Brendan Rooney 교수님이 강의를 하였습니다. 2년만에 다시 하게 되었습니다.
그래프이론의 다양한 부분을 다룹니다. 보통 많이 생각하는 기초적인(?) 해밀턴 회로 오일러 회로 같은건 다루지 않습니다. 주요 내용을 언급하면 아래와 같습니다.
그래프 connectedness: 그래프가 얼마나 잘 연결되었는지, 그리고 한 점에서 다른 점으로 몇 개의 서로 겹치지 않가 있는지와 같은 Menger 정리 등.
그래프의 매칭: 남녀 학생을 짝지울때 써먹는(?) 홀의 결혼정리와 König의 정리, 그리고 남녀가 아닌 일반적인 그래프의 perfect matching에 관한 Tutte의 정리, 그리고 그래프의 maximum matching이 어떤 구조인지 설명하는 Gallai-Edmonds Structure 정리와 함께 Edmonds의 유명한 다항식 시간에 maximum matching 찾는 알고리듬을 다룹니다.
평면그래프: 이산수학 시간에는 정리만 배웠던 Kuratowski 정리를 엄밀하게 증명합니다. 오일러 공식 및 dual에 대해 다룹니다.
채색 문제: 4색정리5색정리를 증명합니다. List Coloring도 배우며 이를 통해 Thomassen의 다른 방식의 5색 정리 증명도 배웁니다. 그리고 perfect graph에 관한 성질도 배웁니다.
Flow 문제: 채색문제의 dual이라고 할 수 있는 nowhere-zero flow에 관해 배우고 관련된 Tutte의 유명한 추측들을 다룹니다.
그외 시간에 따라 다룰 가능성이 있는 주제: Turan 정리, Hadwiger 추측, Szemeredi의 Regularity lemma, Higman의 lemma, Kruskal의 well-quasi-ordering 정리, Robertson과 Seymour의 그래프 마이너 정리
MAS583C Topics in Analytic Combinatorics (해석조합론), 화목 10:30-11:45, 김동수 교수님
예전에 1학점 특강으로 잠깐 개설된 적이 있던 주제인데 이번에 처음 3학점 특강 과목으로 개설되었습니다. 학부 고년차나 대학원생의 경우 학부때 배우는 복소 과목이 어떻게 조합론에서 쓰일 수 있나 알아보는 기회가 되겠습니다. 특히 어떤 조합적 대상의 수를 asymptotic하게 새는 도구들을 배우게 된다고 보시면 됩니다. 과목을 마치게 되면 생성함수를 잘 다루게 될 것이고, 생성함수를 복소평면 위에서의 함수로 이해한 다음 singular point들을 찾아서 분석하는 기술을 습득하게 될 겁니다. 그 외에 다른 재미있는 주제가 있을 것 같습니다.
The Theory of Computation provides a sound logical foundation to computer science. By comparing various formal models of computation with respect to their capabilities, it identifies both fundamental features and ultimate limitations of contemporary digital computing machinery. Rigorous notions of efficiency are captured by famous complexity classes such as P and PSPACE; and concepts like oracles or polynomial-time reduction permit to compare computational problems with respect to their algorithmic cost: NP-hardness results thus serve as ‘beacons’ of intractability.
EE412 빅데이터 분석 개론 (신진우 교수님)
EE488A 머신러닝 소개 (유창동 교수님), EE488B 딥러닝과 알파고 (정세영 교수님), CS492E 기계학습입문 (양은호 교수님): 전기전자 및 전산학부 과목인데, 비슷한 주제로 세 과목이 열리네요.
EE817 Network Science (박홍식 교수님):
In the first half we deal with fundamental network and graph theory and then study generation, characteristics and analysis of various types of networks such as regular, random, small-world, and scale-free network. In the second half, we study dynamic processes on networks including phase transition, resilience, synchronization, epidemic spreading and information spreading in social networks.
MAS711 암호 및 부호이론 (한상근 교수님)
EE623 정보이론 (정혜원 교수님):
This course is a graduate-level introduction to information theory. Information theory is one of the most elegant mathematical theories, with a direct and significant impact to our lives in the information age. In this class, we will learn how to model the information transmission/processing system, with applications of data science as well as communications, and analyze the model from information-theoretical perspectives to derive fundamental limits on what is possible on the system.
전산학부의 기본 과목 중 관련 과목: CS204 이산구조, CS300 알고리듬 개론
최적화 관련 산업및 시스템 공학과 교과목들: IE539 컨벡스 최적화 (김우창 교수님), IE631 정수계획법 (박성수 교수님)
This post will give an incomplete list of theorems covered in MAS575 Combinatorics Fall 2017. This post will be continuously updated throughout this semester. (Last update: April 5, 2017.)
2017년 봄학기 MAS575 조합론 과목에서 다룬 정리들을 정리하였습니다. 빠진 것도 있습니다. 강의가 진행되면서 내용을 업데이트 하겠습니다.
Graham and Pollak (1971). Proof by Tverberg (1982)
The edge set 𝐸(𝐾𝑛) of the complete graph cannot be partitioned into less than 𝑛−1 copies of the edge sets of complete bipartite subgraphs.
Lindström and Smet (1970).
Let 𝐴1,𝐴2,…,𝐴𝑛+1⊆[𝑛]. Then there exist subsets 𝐼 and 𝐽 of [𝑛+1] such that 𝐼∪𝐽≠∅,𝐼∩𝐽=∅,and⋃𝑖∈𝐼𝐴𝑖=⋃𝑗∈𝐽𝐴𝑗.
Lindström (1993)
Let 𝐴1,𝐴2,…,𝐴𝑛+2⊆[𝑛]. Then there exist subsets 𝐼 and 𝐽 of [𝑛+2] such that 𝐼∪𝐽≠∅, 𝐼∩𝐽=∅, and ⋃𝑖∈𝐼𝐴𝑖=⋃𝑗∈𝐽𝐴𝑗and⋂𝑖∈𝐼𝐴𝑖=⋂𝑗∈𝐽𝐴𝑗.
Larman, Rogers, and Seidel (1977) [New in 2017]
Every two-distance set in ℝ𝑛 has at most (𝑛+22)+𝑛+1 points. (A set of points is a two-distance set if the set of distances between distinct points has at most two values.)
Blokhuis (1984) [New in 2017]
Every two-distance set in ℝ𝑛 has at most (𝑛+22) points.
Erdős (1963)
Let 𝐶1,𝐶2,…,𝐶𝑚 be the list of clubs and each club has at least 𝑘 members. If 𝑚<2𝑘−1, then such an assignment of students into two lecture halls is always possible.
Erdős, Ko, and Rado (1961). Proof by Katona (1972)
Let 𝑘≤𝑛/2. Let F be a 𝑘-uniform intersecting family of subsets of an 𝑛-set. Then |F|≤(𝑛−1𝑘−1).
Fisher (1940), extended by Bose (1949). Related to de Brujin and Erdős (1948)
Let 𝑘 be a positive integer. Let F be a family on an 𝑛-set 𝑆 such that |𝑋∩𝑌|=𝑘 whenever 𝑋,𝑌∈F and 𝑋≠𝑌. Then |F|≤𝑛.
Corollary due to de Brujin and Erdős (1948): Suppose that 𝑛 points are given on the plane so that not all are on one line. Then there are at least 𝑛 distinct lines through at least two of the 𝑛 points.
Frankl and Wilson (1981). Proof by Babai (1988).
If a family F of subsets of [𝑛] is 𝐿-intersecting and |𝐿|=𝑠, then |F|≤𝑠∑𝑖=0(𝑛𝑖).
Ray-Chaudhuri and Wilson (1975). Proof by Alon, Babai, and Suzuki (1991).
If a family F of subsets of [𝑛] is uniform 𝐿-intersecting and |𝐿|=𝑠, then |F|≤(𝑛𝑠). (A family of sets is \emph{uniform} if all members have the same size.)
Deza, Frankl, and Singhi (1983)
Let 𝑝 be a prime. Let 𝐿⊆{0,1,2,…,𝑝−1} and |𝐿|=𝑠.If
(i) |𝐴|∉𝐿+𝑝ℤ for all 𝐴∈F,
(ii) |𝐴∩𝐵|∈𝐿+𝑝ℤ for all 𝐴,𝐵∈F, 𝐴≠𝐵,
then |F|≤𝑠∑𝑖=0(𝑛𝑖).
Alon, Babai, and Suzuki (1991)
Let 𝑝 be a prime. Let 𝑘 be an integer. Let 𝐿⊆{0,1,2,…,𝑝−1} and |𝐿|=𝑠. Assume 𝑠+𝑘≤𝑛. If
(i) |𝐴|≡𝑘∉𝐿+𝑝ℤ for all 𝐴∈F,
(ii) |𝐴∩𝐵|∈𝐿+𝑝ℤ for all 𝐴,𝐵∈F, 𝐴≠𝐵,
then |F|≤(𝑛𝑠).
Grolmusz and Sudakov (2002) [New in 2017]
Let 𝑝 be a prime. Let 𝐿⊆{0,1,…,𝑝−1} with |𝐿|=𝑠 and 𝑘≥2. Let F be a family of subsets of [𝑛] such that
(i) |𝐴|∉𝐿+𝑝ℤ for all 𝐴∈F and
(ii) |𝐴1∩𝐴2∩⋯∩𝐴𝑘|∈𝐿+𝑝ℤ for every collection of 𝑘 distinct members 𝐴1,𝐴2,…,𝐴𝑘 of F.
Then |F|≤(𝑘−1)𝑠∑𝑖=0(𝑛𝑖).
Grolmusz and Sudakov (2002) [New in 2017]
Let |𝐿|=𝑠 and 𝑘≥2. Let F be a family of subsets of [𝑛] such that |𝐴1∩𝐴2∩⋯∩𝐴𝑘|∈𝐿 for every collection of 𝑘 distinct members 𝐴1,𝐴2,…,𝐴𝑘 of F. Then |F|≤(𝑘−1)𝑠∑𝑖=0(𝑛𝑖).
Sperner (1928)
If F is an antichain of subsets of an 𝑛-set, then |F|≤(𝑛⌊𝑛/2⌋).
Lubell (1966), Yamamoto (1954), Meschalkin (1963)
If F is an antichain of subsets of an 𝑛-element set, then ∑𝐴∈F1(𝑛|𝐴|)≤1.
Bollobás (1965)
Let 𝐴1, 𝐴2, …, 𝐴𝑚, 𝐵1, 𝐵2, …, 𝐵𝑚 be subsets on an 𝑛-set such that
(a) 𝐴𝑖∩𝐵𝑖=∅ for all 𝑖∈[𝑚],
(b) 𝐴𝑖∩𝐵𝑗≠∅ for all 𝑖≠𝑗.
Then𝑚∑𝑖=11(|𝐴𝑖|+|𝐵𝑖||𝐴𝑖|)≤1.
Bollobás (1965), extending Erdős, Hajnal, and Moon (1964)
If each family of at most (𝑟+𝑠𝑟) edges of an 𝑟-uniform hypergraph can be covered by 𝑠 vertices, then all edges can also be covered by 𝑠 vertices.
Lovász (1977)
Let 𝐴1, 𝐴2, …, 𝐴𝑚, 𝐵1, 𝐵2, …, 𝐵𝑚 be subsets such that |𝐴𝑖|=𝑟 and |𝐵𝑖|=𝑠 for all 𝑖 and
(a) 𝐴𝑖∩𝐵𝑖=∅ for all 𝑖∈[𝑚],
(b) 𝐴𝑖∩𝐵𝑗≠∅ for all 𝑖<𝑗.
Then 𝑚≤(𝑟+𝑠𝑟).
Let 𝑊 be a vector space over a field 𝔽. Let 𝑈1,𝑈2,…,𝑈𝑚,𝑉1,𝑉2,…,𝑉𝑚 be subspaces of 𝑊 such that dim(𝑈𝑖)=𝑟 and dim(𝑉𝑖)=𝑠 for each 𝑖=1,2,…,𝑚 and
(a) 𝑈𝑖∩𝑉𝑖={0} for 𝑖=1,2,…,𝑚;
(b) 𝑈𝑖∩𝑉𝑗≠{0} for 1≤𝑖<𝑗≤𝑚.
Then 𝑚≤(𝑟+𝑠𝑟).
Füredi (1984)
Let 𝑈1,𝑈2,…,𝑈𝑚,𝑉1,𝑉2,…,𝑉𝑚 be subspaces of a vector space 𝑊 over a field 𝔽. If dim(𝑈𝑖)=𝑟, dim(𝑉𝑖)=𝑠 for all 𝑖∈{1,2,…,𝑚} and for some 𝑡≥0,
(a) dim(𝑈𝑖∩𝑉𝑖)≤𝑡 for all 𝑖∈{1,2,…,𝑚},
(b) dim(𝑈𝑖∩𝑉𝑗)>𝑡 for all 1≤𝑖<𝑗≤𝑚,
then 𝑚≤(𝑟+𝑠−2𝑡𝑟−𝑡).
Frankl and Wilson (1981)
The chromatic number of the unit distance graph of ℝ𝑛 is larger than 1.2𝑛 for sufficiently large 𝑛.
Kahn and Kalai (1993)
(Borsuk’s conjecture is false) Let 𝑓(𝑑) be the minimum number such that every set of diameter 1 in ℝ𝑑 can be partitioned into 𝑓(𝑑) sets of smaller diameter. Then 𝑓(𝑑)>(1.2)√𝑑 for large 𝑑.
Mehlhorn and Schmidt (1982) [New in 2017]
For a matrix C, 2𝜅(𝐶)≥rank(𝐶). (Let 𝜅(𝐶) be the minimum number of rounds in order to partition 𝐶 into almost homogeneous matrices, if in each round we can split each of the current submatrices into two either vertically or horizontally. This is a parameter related to the communication complexity.)
Lovász and Saks (1993)
𝜅(𝐶)≤rk(𝐶).
?
There exists a randomized protocol to decide the equality of two strings of length 𝑛 using 𝑂(log𝑛) bits.
The probablity of outputting an incorrect answer is less than 1/𝑛.
Dvir (2009) [New in 2017]
Let 𝑓∈𝔽[𝑥1,…,𝑥𝑛] be a polynomial of degree at most 𝑞−1 over a finite field 𝔽 with 𝑞=|𝐹| elements. Let 𝐾 be a Kakeya set. If 𝑓(𝑥)=0 for all 𝑥∈𝐾, then 𝑓 is a zero polynomial.
If 𝐾⊆𝔽𝑛 is a Kakeya set, then |𝐾|≥(|𝔽|+𝑛−1𝑛)≥|𝐹|𝑛𝑛!.
Ellenberg and Gijswijt (2017) [New in 2017]
If 𝐴 is a subset of 𝔽𝑛3 with no three-term arithmetic progression, then |𝐴|≤3𝑁 where 𝑁=∑𝑎,𝑏,𝑐≥0;𝑎+𝑏+𝑐=𝑛;𝑏+2𝑐≤2𝑛/3𝑛!𝑎!𝑏!𝑐!.Furthermore 3𝑁≤𝑜(2.756𝑛).
Tao (2016) [New in 2017]
Let 𝑘≥2 and let 𝐴 be a finite set and 𝔽 be a field. Let 𝑓:𝐴𝑘→𝔽 be a function such that if 𝑓(𝑥1,𝑥2,…,𝑥𝑘)≠0, then 𝑥1=𝑥2=⋯=𝑥𝑘. Then the slice rank of 𝑓 is equal to |{𝑥:𝑓(𝑥,𝑥,…,𝑥)≠0}|.
Erdős and Rado (1960) [New in 2017]
There is a function 𝑓(𝑘,𝑟) on positive integers 𝑘 and 𝑟 such that every family of 𝑘-sets with more than 𝑓(𝑘,𝑟) members contains a sunflower of size 𝑟.
Naslund and Sawin (2016) [New in 2017]
Let F be a family of subsets of [𝑛] having no sunflower of size 3. Then |F|≤3(𝑛+1)∑𝑘≤𝑛/3(𝑛𝑘).
Alon and Tarsi (1992)
Let 𝔽 be a field and let 𝑓∈𝔽[𝑥1,𝑥2,…,𝑥𝑛]. Suppose that deg(𝑓)=𝑑=∑𝑛𝑖=1𝑑𝑖 and the coefficient of ∏𝑛𝑖=1𝑥𝑑𝑖𝑖 is nonzero. Let 𝐿1,𝐿2,…,𝐿𝑛 be subsets of 𝔽 such that |𝐿𝑖|>𝑑𝑖. Then there exist 𝑎1∈𝐿1, 𝑎2∈𝐿2, …, 𝑎𝑛∈𝐿𝑛 such that 𝑓(𝑎1,𝑎2,…,𝑎𝑛)≠0.
Cauchy (1813), Davenport (1935)
Let 𝑝 be a prime and let 𝐴,𝐵 be two nonempty subsets of ℤ𝑝. Then |𝐴+𝐵|≥min(𝑝,|𝐴|+|𝐵|−1).
Dias da Silva and Hamidoune (1994). A proof by Alon, Nathanson, and Ruzsa (1995). Conjecture of Erdős and Heilbronn (1964).
Let 𝑝 be a prime and 𝐴 be a nonempty subset of ℤ𝑝. Then |{𝑎+𝑎′:𝑎,𝑎′∈𝐴,𝑎≠𝑎′}|≥min(𝑝,2|𝐴|−3).
Alon (2000) [New in 2017]
Let 𝑝 be an odd prime. For 𝑘<𝑝 and every integers 𝑎1,𝑎2,…,𝑎𝑘,𝑏1,𝑏2,…,𝑏𝑘, if 𝑏1,𝑏2,…,𝑏𝑘 are distinct, then there exists a permutation 𝜋 of {1,2,…,𝑘} such that the sums 𝑎𝑖+𝑏𝜋(𝑖) are distinct.
Alon? [New in 2017]
If 𝐴 is an 𝑛×𝑛 matrix over a field 𝔽, per(𝐴)≠0 and 𝑏∈𝔽𝑛, then for every family of sets 𝐿1, 𝐿2, …, 𝐿𝑛 of size 2 each, there is a vector 𝑥∈𝐿1×𝐿2×⋯×𝐿𝑛 such that (𝐴𝑥)𝑖≠𝑏𝑖 for all 𝑖.
Alon? [New in 2017]
Let 𝐺 be a bipartite graph with the bipartition 𝐴, 𝐵 with |𝐴|=|𝐵|=𝑛. Let 𝐵={𝑏1,𝑏2,…,𝑏𝑛}. If 𝐺 has at least one perfect matching, then for every integer 𝑑1,𝑑2,…,𝑑𝑛, there exists a subset 𝑋 of 𝐴 such that for each 𝑖, the number of neighbors of 𝑏𝑖 in 𝑋 is not 𝑑𝑖.
Erdős, Ginzburg, and Ziv (1961) [New in 2017]
Let 𝑝 be a prime. Every sequence 𝑎1,𝑎2,…,𝑎2𝑝−1 of integers contains a subsequence 𝑎𝑖1, 𝑎𝑖2, …, 𝑎𝑖𝑝 such that 𝑎𝑖1+𝑎𝑖2+⋯𝑎𝑖𝑝≡0(mod𝑝).
Alon, Friedland, and Kalai (1984) [New in 2017]
Every (multi)graph with average degree >4 and maximum degree ≤5 contains a 3-regular subgraph.
?
Let 𝐺 be an undirected graph. Let 𝑑(𝐺)=max𝐻⊆𝐺|𝐸(𝐻)||𝑉(𝐻)|. Then there is an orientation of 𝐺 such that the outdegree of each vertex is at most ⌈𝑑(𝐺)⌉.
2년~3년 정도 주기로 열리고 있는 과목입니다. 국내에서는 KAIST에서만 볼 수 있는 과목으로 이산기하 전공하신 교수님으로부터 잘 배울 수 있습니다. 흥미로운 증명과 주제들이 많습니다. 마지막으로 열린 것은 2014년 봄입니다. 특별한 선수과목은 없지만 이산수학을 들어두었으면 수학적 내공이 충분하지 않을까 생각됩니다.
강의 설명:This course is an introduction to discrete geometry. We will cover basic results from packing and covering, convex polytopes, intersection patterns of convex sets, and combinatorial geometry. Our goal is to reach some key results by combining methods from linear algebra, topology, and probability. However, since this is an introductory course, all necessary notions will be introduced. The main prerequisite for this course is a basic understanding of elementary discrete mathemtaics and the n-dimensional Euclidean space.
교재: Jiří Matoušek, Lectures on Discrete Geometry (Springer, GTM 212). http://link.springer.com/book/10.1007%2F978-1-4613-0039-7
KAIST 교내에서는 위 링크를 통해 Springer에서 책을 온라인으로 볼 수 있습니다.
교재: Chris Godsil, Gordon Royle, Algebraic Graph Theory, Sringer, GTM 207. http://link.springer.com/book/10.1007/978-1-4613-0163-9
KAIST 교내에서는 위 링크를 통해 Springer에서 책을 온라인으로 볼 수 있습니다.
KAIST에서는 적어도 최근 10년간은 열린 적이 없는 과목이고 앞으로도 언제 다시 열릴지 알 수 없는 과목입니다. Algebraic Graph Theory를 전공하였고 교재의 저자인 Chris Godsil 교수로부터 박사학위를 받은 Brendan Rooney 교수님이 강의하실 예정이라 기대가 됩니다.
중요한 선수과목은 선형대수학개론 혹은 선형대수학입니다. 행렬의 eigenvalue 관련된 내용을 숙지하고 spectral decomposition 같은 것들도 잘 알고 있으면 좋습니다.
MAS575 Combinatorics (조합수학), 화목 10:30~12:00, 엄상일.
주교재: S. Jukna, Extremal Combinatorics, Springer-Verlag http://link.springer.com/book/10.1007%2F978-3-642-17364-6
KAIST 교내에서는 위 링크를 통해 Springer에서 책을 온라인으로 볼 수 있습니다.
여러 기술들이 조합수학의 정리를 증명하는데 어떻게 활용되는지 다양하게 살펴봅니다. 선형대수 활용하는 방법, 다항식의 성질을 활용하는 방법, 램지 정리 관련, 확률을 활용하는 방법 등 다양한 주제를 다룹니다. 이산수학, 선형대수학개론을 수강한 학생이 듣는 것이 좋으며 가을마다 열리는 그래프이론개론을 수강했었다면 좀더 수월할 수도 있지만 내용은 독립적입니다.
2년마다 한 번씩 봄에 열리며, 학부생이나 대학원생 모두 수강 가능합니다.
MAS583C 수학특론 Parameterized Algorithms and Lower Bounds (매개변수 고정 알고리즘과 하한), 수 16:00~17:30, 금 10:30~12:00, Helmut Alt 교수 및 Otfried Cheong 교수
전산학과 CS700과 교차개설된 과목입니다. 강의실도 전산학부 건물에서 열립니다. 독일 베를린자유대학 Helmut Alt 교수님이 KAIST 오셔서 강의하십니다.
비슷한 과목은 2014년 봄에 수리과학과에서 제가 MAS583B Fixed-Parameter Algorithms라는 제목으로 연 적이 있습니다. 내용은 비슷하지 않을까 생각합니다. 그래프이론과도 관련이 많고 제 연구와도 관련이 많습니다.
교재: Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh, Parameterized Algorithms, Springer. http://link.springer.com/book/10.1007/978-3-319-21275-3
KAIST 교내에서는 위 링크를 통해 Springer에서 책을 온라인으로 볼 수 있습니다.