adress: | Pascal Gollin Discrete Mathematics Group Institute for Basic Science 55 Expo-ro, Yuseong-gu, Daejeon, Republic of Korea, 34126 |

office: | B317, Theory Building |

phone: | +82 42 878 9211 |

email: | pascalgollin [at] ibs.re.kr |

other: | Google Scholar profile MathSciNet Author ID: 1187500 arXiv ID: gollin_j_1 MPG ID: 257911 ORCID iD: 0000-0003-2095-7101 Researcher ID: AAQ-6679-2020 ResearchGate profile Scopus ID: 57190127300 |

#### about me

I am a research fellow in the *Discrete Mathematics Group (DIMAG)*, which is part of the Pioneer Research Center for Mathematical and Computational Sciences within the Institute for Basic Science (IBS) in South Korea.

I work in graph theory with a focus on structural graph theory of both finite and infinite graphs and digraphs.

I obtained my PhD in mathematics from the University of Hamburg, under the supervision of Reinhard Diestel.

PhD Thesis: Connectivity and tree structure in infinite graphs and digraphs

#### publications and preprints

- Linear bounds on treewidth in terms of excluded planar minors

(with K. Hendrey, S. Oum, and B. Reed), Preprint 2024, submitted

arXiv: 2402.17255 - Odd-Minors I: Excluding small parity breaks

(with S. Wiederrecht), Preprint 2023

arXiv: 2304.04504 - Matching variables to equations in infinite linear equation systems

(with A. Joó),*Linear Algebra and its Applications***660**:40-46, 2023

doi: 10.1016/j.laa.2022.12.002, arXiv: 2211.12917, MR: 4522474 - Graphs of linear growth have bounded treewidth

(with R. Campbell, M. Distel, D. J. Harvey, K. Hendrey, R. Hickingbotham, B. Mohar, and D. R. Wood),*Electronic Journal of Combinatorics***30**(3):P3.1, 12 pp., 2023

doi: 10.37236/11657, arXiv: 2210.13720, MR: 4614535 - A unified Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups

(with K. Hendrey, O. Kwon, S. Oum, and Y. Yoo), Preprint, 2022, submitted

arXiv: 2209.09488 - Product structure of graph classes with bounded treewidth

(with R. Campbell, K. Clinch, M. Distel, K. Hendrey, R. Hickingbotham, T. Huynh, F. Illingworth,

Y. Tamitegama, J. Tan, and D. R. Wood),*Combinatorics, Probability and Computing*(to appear in print), 2023

doi: 10.1017/S0963548323000457, arXiv: 2206.02395 - Disjoint dijoins for classes of dicuts in finite and infinite digraphs

(with K. Heuer and K. Stavropoulos),*Combinatorial Theory***2**(3), #16, 21 pp, 2022

doi: 10.5070/C62359180, arXiv: 2109.03518, MR: 4498597 - Counting cliques in
*1*-planar graphs

(with K. Hendrey, A. Methuku, C. Tompkins, and X. Zhang),*European Journal of Combinatorics***109**, 103654, 27 pp, 2023

doi: 10.1016/j.ejc.2022.103654, arXiv: 2109.02906, MR: 4522420 - A unified half-integral Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups

(with K. Hendrey, K. Kawarabayashi, O. Kwon, and S. Oum),*Journal of the London Mathematical Society***109**(1), e12858, 35 pp, 2024

doi: 10.1112/jlms.12858, arXiv: 2102.01986 - Ubiquity of locally finite graphs with extensive tree-decompositions

(with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Preprint, 2020, submitted

arXiv: 2012.13070 - Obstructions for bounded branch-depth in matroids

(with K. Hendrey, D. Mayhew, and S. Oum),*Advances in Combinatorics*, 2021:4, 25 pp, 2021

doi: 10.19086/aic.24227, arXiv: 2003.13975, MR: 4269799 - Enlarging vertex-flames in countable digraphs

(with J. Erde and A. Joó),*Journal of Combinatorial Theory Series B***151**:263-281, 2021

doi: 10.1016/j.jctb.2021.06.011, arXiv: 2003.06178, MR: 4285900 - Base partition for finitary-cofinatary matroid families

(with J. Erde, A. Joó, P. Knappe, and M. Pitz),*Combinatorica***41**:31-52, 2021

doi: 10.1007/s00493-020-4422-4, arXiv: 1910.05601, MR: 4235313 - On the infinite Lucchesi-Younger Conjecture I

(with K. Heuer),*Journal of Graph Theory***98**:27-48, 2021

doi: 10.1002/jgt.22680, arXiv: 1909.08373, MR: 4313226 - Representations of infinite tree sets

(with J. Kneip),*Order***38**(1):79-96, 2021

doi: 10.1007/s11083-020-09529-0, arXiv: 1908.10327, MR: 4239857 - A Cantor-Bernstein-type theorem for spanning trees in infinite graphs

(with J. Erde, A. Joó, P. Knappe, and M. Pitz),*Journal of Combinatorial Theory Series B***149**:16-22, 2021

doi: 10.1016/j.jctb.2021.01.004, arXiv: 1907.09338, MR: 4203549 - Characterising
*k*-connected sets in infinite graphs

(with K. Heuer),*Journal of Combinatorial Theory Series B***157**:451-499, 2022

doi: 10.1016/j.jctb.2022.08.004, arXiv: 1811.06411, MR: 4476009 - Ubiquity of graphs with nowhere-linear end structure

(with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen),*Journal of Graph Theory*,**103**(3):564-598, 2023

arXiv: 1809.00602, doi: 10.1002/jgt.22936, MR: 4596513 - Topological ubiquity of trees

(with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen),*Journal of Combinatorial Theory Series B***157**:70-95, 2022

doi: 10.1016/j.jctb.2022.05.011, arXiv: 1806.04008, MR: 4438889 - An analogue of Edmonds’ Branching Theorem for infinite digraphs

(with K. Heuer),*European Journal of Combinatorics***92**:103323, 14 pp, 2021

doi: 10.1016/j.ejc.2020.103182, arXiv: 1805.02933, MR: 4142158 - Infinite end-devouring sets of rays with prescribed start vertices

(with K. Heuer),*Discrete Mathematics***341**(7):2117-2120, 2018

doi: 10.1016/j.disc.2018.04.012, arXiv: 1704.06577, MR: 3802167 - Canonical tree-decompositions of a graph that display its
*k*-blocks

(with J. Carmesin),*Journal of Combinatorial Theory Series B***122**:1-20, 2017

doi: 10.1016/j.jctb.2016.05.001, arXiv: 1506.02904, MR: 3575193