Pascal Gollin


Pascal Gollin
Discrete Mathematics Group
Institute for Basic Science
55 Expo-ro, Yuseong-gu,
Daejeon, Republic of Korea, 34126
office:B317, Theory Building
phone:+82 42 878 9211
email:pascalgollin [at]
other:Google Scholar profile
MathSciNet Author ID: 1187500
MPG ID: 257911
ORCID iD: 0000-0003-2095-7101
Researcher ID: AAQ-6679-2020
ResearchGate profile
Scopus ID: 57190127300

about me

I am a research fellow in the Discrete Mathematics Group (DIMAG), which is part of the Pioneer Research Center for Mathematical and Computational Sciences within the Institute for Basic Science (IBS) in South Korea.
I work in graph theory with a focus on structural graph theory of both finite and infinite graphs and digraphs.
I obtained my PhD in mathematics from the University of Hamburg, under the supervision of Reinhard Diestel.
PhD Thesis: Connectivity and tree structure in infinite graphs and digraphs

publications and preprints

  1. Odd-Minors I: Excluding small parity breaks
    (with S. Wiederrecht), Preprint 2023
    arXiv: 2304.04504
  2. Matching variables to equations in infinite linear equation systems
    (with A. Joó), Linear Algebra and its Applications 660:40-46, 2023
    doi: 10.1016/j.laa.2022.12.002, arXiv: 2211.12917, MR: 4522474
  3. Graphs of linear growth have bounded treewidth
    (with R. Campbell, M. Distel, D. J. Harvey, K. Hendrey, R. Hickingbotham, B. Mohar, and D. R. Wood), Electronic Journal of Combinatorics 30(3):P3.1, 12 pp., 2023
    doi: 10.37236/11657, arXiv: 2210.13720, MR: 4614535
  4. A unified Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups
    (with K. Hendrey, O. Kwon, S. Oum, and Y. Yoo), Preprint, 2022, submitted
    arXiv: 2209.09488
  5. Product structure of graph classes with bounded treewidth
    (with R. Campbell, K. Clinch, M. Distel, K. Hendrey, R. Hickingbotham, T. Huynh, F. Illingworth,
    Y. Tamitegama, J. Tan, and D. R. Wood), Preprint, 2022, submitted
    arXiv: 2206.02395
  6. Disjoint dijoins for classes of dicuts in finite and infinite digraphs
    (with K. Heuer and K. Stavropoulos), Combinatorial Theory 2(3), #16, 21 pp, 2022
    doi: 10.5070/C62359180, arXiv: 2109.03518, MR: 4498597
  7. Counting cliques in 1-planar graphs
    (with K. Hendrey, A. Methuku, C. Tompkins, and X. Zhang), European Journal of Combinatorics 109, 103654, 27 pp, 2023
    doi: 10.1016/j.ejc.2022.103654, arXiv: 2109.02906, MR: 4522420
  8. A unified half-integral Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups
    (with K. Hendrey, K. Kawarabayashi, O. Kwon, and S. Oum), Preprint, 2021, submitted
    arXiv: 2102.01986
  9. Ubiquity of locally finite graphs with extensive tree-decompositions
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Preprint, 2020, submitted
    arXiv: 2012.13070
  10. Obstructions for bounded branch-depth in matroids
    (with K. Hendrey, D. Mayhew, and S. Oum), Advances in Combinatorics, 2021:4, 25 pp, 2021
    doi: 10.19086/aic.24227, arXiv: 2003.13975, MR: 4269799
  11. Enlarging vertex-flames in countable digraphs
    (with J. Erde and A. Joó), Journal of Combinatorial Theory Series B 151:263-281, 2021
    doi: 10.1016/j.jctb.2021.06.011, arXiv: 2003.06178, MR: 4285900
  12. Base partition for finitary-cofinatary matroid families
    (with J. Erde, A. Joó, P. Knappe, and M. Pitz), Combinatorica 41:31-52, 2021
    doi: 10.1007/s00493-020-4422-4, arXiv: 1910.05601, MR: 4235313
  13. On the infinite Lucchesi-Younger Conjecture I
    (with K. Heuer), Journal of Graph Theory 98:27-48, 2021
    doi: 10.1002/jgt.22680, arXiv: 1909.08373, MR: 4313226
  14. Representations of infinite tree sets
    (with J. Kneip), Order 38(1):79-96, 2021
    doi: 10.1007/s11083-020-09529-0, arXiv: 1908.10327, MR: 4239857
  15. A Cantor-Bernstein-type theorem for spanning trees in infinite graphs
    (with J. Erde, A. Joó, P. Knappe, and M. Pitz), Journal of Combinatorial Theory Series B 149:16-22, 2021
    doi: 10.1016/j.jctb.2021.01.004, arXiv: 1907.09338, MR: 4203549
  16. Characterising k-connected sets in infinite graphs
    (with K. Heuer), Journal of Combinatorial Theory Series B 157:451-499, 2022
    doi: 10.1016/j.jctb.2022.08.004, arXiv: 1811.06411, MR: 4476009
  17. Ubiquity of graphs with nowhere-linear end structure
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Journal of Graph Theory, 103(3):564-598, 2023
    arXiv: 1809.00602, doi: 10.1002/jgt.22936, MR: 4596513
  18. Topological ubiquity of trees
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Journal of Combinatorial Theory Series B 157:70-95, 2022
    doi: 10.1016/j.jctb.2022.05.011, arXiv: 1806.04008, MR: 4438889
  19. An analogue of Edmonds’ Branching Theorem for infinite digraphs
    (with K. Heuer), European Journal of Combinatorics 92:103323, 14 pp, 2021
    doi: 10.1016/j.ejc.2020.103182, arXiv: 1805.02933, MR: 4142158
  20. Infinite end-devouring sets of rays with prescribed start vertices
    (with K. Heuer), Discrete Mathematics 341(7):2117-2120, 2018
    doi: 10.1016/j.disc.2018.04.012, arXiv: 1704.06577, MR: 3802167
  21. Canonical tree-decompositions of a graph that display its k-blocks
    (with J. Carmesin), Journal of Combinatorial Theory Series B 122:1-20, 2017
    doi: 10.1016/j.jctb.2016.05.001, arXiv: 1506.02904, MR: 3575193