adress: | Pascal Gollin Discrete Mathematics Group Institute for Basic Science 55 Expo-ro, Yuseong-gu, Daejeon, Republic of Korea, 34126 |

office: | B209, Theory Building |

phone: | +82 42 878 9211 |

email: | pascalgollin [at] ibs.re.kr |

other: | Google Scholar profile MathSciNet Author ID: 1187500 MPG ID: 257911 ORCID iD: 0000-0003-2095-7101 Researcher ID: AAQ-6679-2020 ResearchGate profile Scopus ID: 57190127300 |

#### about me

I am a research fellow in the *Discrete Mathematics Group (DIMAG)*, which is part of the Pioneer Research Center for Mathematical and Computational Sciences within the Institute for Basic Science (IBS) in South Korea.

I work in graph theory with a focus on structural graph theory of both finite and infinite graphs and digraphs.

I obtained my PhD in mathematics from the University of Hamburg, under the supervision of Reinhard Diestel.

PhD Thesis: Connectivity and tree structure in infinite graphs and digraphs

#### publications and preprints

- A unified half-integral Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups

(with K. Hendrey, K. Kawarabayashi, O. Kwon, and S. Oum), Preprint, 2021, submitted

arXiv: 2102.01986 - Ubiquity in graphs III: Ubiquity of locally finite graphs with extensive tree-decompositions

(with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Preprint, 2020, submitted

arXiv: 2012.13070 - Obstructions for bounded branch-depth in matroids

(with K. Hendrey, D. Mayhew, and S. Oum),*Advances in Combinatorics*, 2021:4, 25 pp, 2021

doi: 10.19086/aic.24227, arXiv: 2003.13975 - Enlarging vertex-flames in countable digraphs

(with J. Erde and A. Joó),*Journal of Combinatorial Theory Series B***151**:263-281, 2021

doi: 10.1016/j.jctb.2021.06.011, arXiv: 2003.06178 - Base partition for finitary-cofinatary matroid families

(with J. Erde, A. Joó, P. Knappe, and M. Pitz),*Combinatorica***41**:31-52, 2021

doi: 10.1007/s00493-020-4422-4, arXiv: 1910.05601, MR: 4235313 - On the infinite Lucchesi-Younger Conjecture I

(with K. Heuer),*Journal of Graph Theory***98**:27-48, 2021

doi: 10.1002/jgt.22680, arXiv: 1909.08373 - Representations of infinite tree sets

(with J. Kneip),*Order***38**(1):79-96, 2021

doi: 10.1007/s11083-020-09529-0, arXiv: 1908.10327, MR: 4239857 - A Cantor-Bernstein-type theorem for spanning trees in infinite graphs

(with J. Erde, A. Joó, P. Knappe, and M. Pitz),*Journal of Combinatorial Theory Series B***149**:16-22, 2021

doi: 10.1016/j.jctb.2021.01.004, arXiv: 1907.09338, MR: 4203549 - Characterising
*k*-connected sets in infinite graphs

(with K. Heuer), Preprint, 2018, submitted

arXiv: 1811.06411 - Ubiquity in graphs II: Ubiquity of graphs with nowhere-linear end structure

(with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Preprint, 2018, submitted

arXiv: 1809.00602 - Ubiquity in graphs I: Topological ubiquity of trees

(with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Preprint, 2018, submitted

arXiv: 1806.04008 - An analogue of Edmonds’ Branching Theorem for infinite digraphs

(with K. Heuer),*European Journal of Combinatorics***92**, 103323, 14 pp, 2021

doi: 10.1016/j.ejc.2020.103182, arXiv: 1805.02933, MR: 4142158 - Infinite end-devouring sets of rays with prescribed start vertices

(with K. Heuer),*Discrete Mathematics***341**(7):2117-2120, 2018

doi: 10.1016/j.disc.2018.04.012, arXiv: 1704.06577, MR: 3802167 - Canonical tree-decompositions of a graph that display its
*k*-blocks

(with J. Carmesin),*Journal of Combinatorial Theory Series B***122**:1-20, 2017

doi: 10.1016/j.jctb.2016.05.001, arXiv: 1506.02904, MR: 3575193