Pascal Gollin


Pascal Gollin
Discrete Mathematics Group
Institute for Basic Science
55 Expo-ro, Yuseong-gu,
Daejeon, Republic of Korea, 34126
office:B317, Theory Building
phone:+82 42 878 9211
email:pascalgollin [at]
other:Google Scholar profile
MathSciNet Author ID: 1187500
arXiv ID: gollin_j_1
MPG ID: 257911
ORCID iD: 0000-0003-2095-7101
Researcher ID: AAQ-6679-2020
ResearchGate profile
Scopus ID: 57190127300

about me

I am a research fellow in the Discrete Mathematics Group (DIMAG), which is part of the Pioneer Research Center for Mathematical and Computational Sciences within the Institute for Basic Science (IBS) in South Korea.
I work in graph theory with a focus on structural graph theory of both finite and infinite graphs and digraphs.
I obtained my PhD in mathematics from the University of Hamburg, under the supervision of Reinhard Diestel.
PhD Thesis: Connectivity and tree structure in infinite graphs and digraphs

publications and preprints

  1. A coarse Erdős-Pósa theorem
    (with J. Ahn, T. Huynh, and O. Kwon), Preprint 2024, submitted
    arXiv: 2407.05883
  2. Optimal bounds for zero-sum cycles. I. Odd order
    (with R. CampbellK. Hendrey, and R. Steiner), Preprint 2024, submitted
    arXiv: 2406.19855
  3. Sharing tea on a graph
    (with K. Hendrey, H. Huang, T. Huynh, B. Mohar, S. Oum, N. Yang, W. Yu, X. Zhu), Preprint 2024, submitted
    arXiv: 2405.15353
  4. Linear bounds on treewidth in terms of excluded planar minors
    (with K. Hendrey, S. Oum, and B. Reed), Preprint 2024, submitted
    arXiv: 2402.17255
  5. Odd-Minors I: Excluding small parity breaks
    (with S. Wiederrecht), Preprint 2023
    arXiv: 2304.04504
  6. Matching variables to equations in infinite linear equation systems
    (with A. Joó), Linear Algebra and its Applications 660:40-46, 2023
    doi: 10.1016/j.laa.2022.12.002, arXiv: 2211.12917, MR: 4522474
  7. Graphs of linear growth have bounded treewidth
    (with R. Campbell, M. Distel, D. J. Harvey, K. Hendrey, R. Hickingbotham, B. Mohar, and D. R. Wood), Electronic Journal of Combinatorics 30(3):P3.1, 12 pp., 2023
    doi: 10.37236/11657, arXiv: 2210.13720, MR: 4614535
  8. A unified Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups
    (with K. Hendrey, O. Kwon, S. Oum, and Y. Yoo), Preprint, 2022, submitted
    arXiv: 2209.09488
  9. Product structure of graph classes with bounded treewidth
    (with R. Campbell, K. Clinch, M. Distel, K. Hendrey, R. Hickingbotham, T. Huynh, F. Illingworth,
    Y. Tamitegama, J. Tan, and D. R. Wood), Combinatorics, Probability and Computing 33(3):351-376, 2024
    doi: 10.1017/S0963548323000457, arXiv: 2206.02395, MR: 4730906
  10. Disjoint dijoins for classes of dicuts in finite and infinite digraphs
    (with K. Heuer and K. Stavropoulos), Combinatorial Theory 2(3), #16, 21 pp, 2022
    doi: 10.5070/C62359180, arXiv: 2109.03518, MR: 4498597
  11. Counting cliques in 1-planar graphs
    (with K. Hendrey, A. Methuku, C. Tompkins, and X. Zhang), European Journal of Combinatorics 109, 103654, 27 pp, 2023
    doi: 10.1016/j.ejc.2022.103654, arXiv: 2109.02906, MR: 4522420
  12. A unified half-integral Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups
    (with K. Hendrey, K. Kawarabayashi, O. Kwon, and S. Oum), Journal of the London Mathematical Society 109(1), e12858, 35 pp, 2024
    doi: 10.1112/jlms.12858, arXiv: 2102.01986, MR: 4754439
  13. Ubiquity of locally finite graphs with extensive tree-decompositions
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), to appear in Combinatorial Theory, 2024
    arXiv: 2012.13070
  14. Obstructions for bounded branch-depth in matroids
    (with K. Hendrey, D. Mayhew, and S. Oum), Advances in Combinatorics, 2021:4, 25 pp, 2021
    doi: 10.19086/aic.24227, arXiv: 2003.13975, MR: 4269799
  15. Enlarging vertex-flames in countable digraphs
    (with J. Erde and A. Joó), Journal of Combinatorial Theory Series B 151:263-281, 2021
    doi: 10.1016/j.jctb.2021.06.011, arXiv: 2003.06178, MR: 4285900
  16. Base partition for finitary-cofinatary matroid families
    (with J. Erde, A. Joó, P. Knappe, and M. Pitz), Combinatorica 41:31-52, 2021
    doi: 10.1007/s00493-020-4422-4, arXiv: 1910.05601, MR: 4235313
  17. On the infinite Lucchesi-Younger Conjecture I
    (with K. Heuer), Journal of Graph Theory 98:27-48, 2021
    doi: 10.1002/jgt.22680, arXiv: 1909.08373, MR: 4313226
  18. Representations of infinite tree sets
    (with J. Kneip), Order 38(1):79-96, 2021
    doi: 10.1007/s11083-020-09529-0, arXiv: 1908.10327, MR: 4239857
  19. A Cantor-Bernstein-type theorem for spanning trees in infinite graphs
    (with J. Erde, A. Joó, P. Knappe, and M. Pitz), Journal of Combinatorial Theory Series B 149:16-22, 2021
    doi: 10.1016/j.jctb.2021.01.004, arXiv: 1907.09338, MR: 4203549
  20. Characterising k-connected sets in infinite graphs
    (with K. Heuer), Journal of Combinatorial Theory Series B 157:451-499, 2022
    doi: 10.1016/j.jctb.2022.08.004, arXiv: 1811.06411, MR: 4476009
  21. Ubiquity of graphs with nowhere-linear end structure
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Journal of Graph Theory, 103(3):564-598, 2023
    arXiv: 1809.00602, doi: 10.1002/jgt.22936, MR: 4596513
  22. Topological ubiquity of trees
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Journal of Combinatorial Theory Series B 157:70-95, 2022
    doi: 10.1016/j.jctb.2022.05.011, arXiv: 1806.04008, MR: 4438889
  23. An analogue of Edmonds’ Branching Theorem for infinite digraphs
    (with K. Heuer), European Journal of Combinatorics 92:103323, 14 pp, 2021
    doi: 10.1016/j.ejc.2020.103182, arXiv: 1805.02933, MR: 4142158
  24. Infinite end-devouring sets of rays with prescribed start vertices
    (with K. Heuer), Discrete Mathematics 341(7):2117-2120, 2018
    doi: 10.1016/j.disc.2018.04.012, arXiv: 1704.06577, MR: 3802167
  25. Canonical tree-decompositions of a graph that display its k-blocks
    (with J. Carmesin), Journal of Combinatorial Theory Series B 122:1-20, 2017
    doi: 10.1016/j.jctb.2016.05.001, arXiv: 1506.02904, MR: 3575193