Pascal Gollin

adress:



Pascal Gollin
Discrete Mathematics Group
Institute for Basic Science
55 Expo-ro, Yuseong-gu,
Daejeon, Republic of Korea, 34126
office:B209, Theory Building
phone:+82 42 878 9211
email:pascalgollin [at] ibs.re.kr
other:Google Scholar profile
MathSciNet Author ID: 1187500
MPG ID: 257911
ORCID iD: 0000-0003-2095-7101
Researcher ID: AAQ-6679-2020
ResearchGate profile
Scopus ID: 57190127300

about me

I am a research fellow in the Discrete Mathematics Group (DIMAG), which is part of the Pioneer Research Center for Mathematical and Computational Sciences within the Institute for Basic Science (IBS) in South Korea.
I work in graph theory with a focus on structural graph theory of both finite and infinite graphs and digraphs.
I obtained my PhD in mathematics from the University of Hamburg, under the supervision of Reinhard Diestel.
PhD Thesis: Connectivity and tree structure in infinite graphs and digraphs

publications and preprints

  1. Disjoint dijoins for classes of dicuts in finite and infinite digraphs
    (with K. Heuer and K. Stavropoulos), Preprint, 2021, submitted
    arXiv:2109.03518
  2. Counting cliques in 1-planar graphs
    (with K. Hendrey, A. Methuku, C. Tompkins, and X. Zhang), Preprint, 2021, submitted
    arXiv:2109.02906
  3. A unified half-integral Erdős-Pósa theorem for cycles in graphs labelled by multiple abelian groups
    (with K. Hendrey, K. Kawarabayashi, O. Kwon, and S. Oum), Preprint, 2021, submitted
    arXiv: 2102.01986
  4. Ubiquity in graphs III: Ubiquity of locally finite graphs with extensive tree-decompositions
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Preprint, 2020, submitted
    arXiv: 2012.13070
  5. Obstructions for bounded branch-depth in matroids
    (with K. Hendrey, D. Mayhew, and S. Oum), Advances in Combinatorics, 2021:4, 25 pp, 2021
    doi: 10.19086/aic.24227, arXiv: 2003.13975
  6. Enlarging vertex-flames in countable digraphs
    (with J. Erde and A. Joó), Journal of Combinatorial Theory Series B 151:263-281, 2021
    doi: 10.1016/j.jctb.2021.06.011, arXiv: 2003.06178, MR: 4285900
  7. Base partition for finitary-cofinatary matroid families
    (with J. Erde, A. Joó, P. Knappe, and M. Pitz), Combinatorica 41:31-52, 2021
    doi: 10.1007/s00493-020-4422-4, arXiv: 1910.05601, MR: 4235313
  8. On the infinite Lucchesi-Younger Conjecture I
    (with K. Heuer), Journal of Graph Theory 98:27-48, 2021
    doi: 10.1002/jgt.22680, arXiv: 1909.08373
  9. Representations of infinite tree sets
    (with J. Kneip), Order 38(1):79-96, 2021
    doi: 10.1007/s11083-020-09529-0, arXiv: 1908.10327, MR: 4239857
  10. A Cantor-Bernstein-type theorem for spanning trees in infinite graphs
    (with J. Erde, A. Joó, P. Knappe, and M. Pitz), Journal of Combinatorial Theory Series B 149:16-22, 2021
    doi: 10.1016/j.jctb.2021.01.004, arXiv: 1907.09338, MR: 4203549
  11. Characterising k-connected sets in infinite graphs
    (with K. Heuer), Preprint, 2018, submitted
    arXiv: 1811.06411
  12. Ubiquity in graphs II: Ubiquity of graphs with nowhere-linear end structure
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Preprint, 2018, submitted
    arXiv: 1809.00602
  13. Ubiquity in graphs I: Topological ubiquity of trees
    (with N. Bowler, C. Elbracht, J. Erde, K. Heuer, M. Pitz, and M. Teegen), Preprint, 2018, submitted
    arXiv: 1806.04008
  14. An analogue of Edmonds’ Branching Theorem for infinite digraphs
    (with K. Heuer), European Journal of Combinatorics 92, 103323, 14 pp, 2021
    doi: 10.1016/j.ejc.2020.103182, arXiv: 1805.02933, MR: 4142158
  15. Infinite end-devouring sets of rays with prescribed start vertices
    (with K. Heuer), Discrete Mathematics 341(7):2117-2120, 2018
    doi: 10.1016/j.disc.2018.04.012, arXiv: 1704.06577, MR: 3802167
  16. Canonical tree-decompositions of a graph that display its k-blocks
    (with J. Carmesin), Journal of Combinatorial Theory Series B 122:1-20, 2017
    doi: 10.1016/j.jctb.2016.05.001, arXiv: 1506.02904, MR: 3575193