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Abstract

For a graph with a vertex v, the local complementation at v is an operation that replaces
the neighborhood of v by its complement graph. Two graphs are locally equivalent if one is
obtained from the other by a sequence of local complementations. A graph H is a vertex-
minor of a graph G if H is an induced subgraph of a graph locally equivalent to G. Although
this concept was introduced in the 1980s, it was not widely known and except for the survey
paper of Bouchet published in 1990, there is no comprehensive survey listing all the new
developments. We survey classic and recent theorems and conjectures on vertex-minors and
related concepts such as circle graphs, cut-rank functions, rank-width, interlace polynomials,
and isotropic systems.

1 Introduction

We aim to survey known results and conjectures for vertex-minors of graphs. In this paper, all
graphs are simple, meaning that neither loops nor parallel edges are allowed. For a vertex v of
a graph G, we write G ´ v to denote the graph obtained by deleting the vertex v and all edges
incident with v.

Let us start with their definitions. Vertex-minors are defined in terms of two graph oper-
ations, local complementations and vertex deletions. The local complementation of a graph G
at a vertex v is an operation to obtain a new graph denoted by G ˚ v from G by ‘toggling’
the adjacencies between all pairs of neighbors of v, see Figure 1. In other words, two distinct
vertices x and y are adjacent in G ˚ v if and only if exactly one of the following holds.

(a) x and y are adjacent in G.

(b) Both x and y are neighbors of v in G.

Two graphs are locally equivalent if one is obtained from the other by a sequence of local com-
plementations. A graph H is a vertex-minor of a graph G if H is an induced subgraph of a graph
locally equivalent to G. The name ‘vertex-minor’ first appeared in Oum [Oum05] but it appeared
previously under the various names such as l-reduction [Bou94] and i-minor [Bou87d]. According
to Bouchet [Bou90], local complementations were introduced by Kotzig [Kot68,Kot77].

For two adjacent vertices x and y, we write G^xy to denote G˚x˚y ˚x. It is easy to check
that G ˚ x ˚ y ˚ x “ G ˚ y ˚ x ˚ y and so this operation is well defined and is called the pivot
operation. We note that G ^ xy could be obtained from G by toggling the adjacency between
every pair of vertices in two different sets among NGpxq ´ pNGpyq Y tyuq, NGpxq X NGpyq, and
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Figure 1: Examples of local complementations and pivotings.
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Figure 2: Two circle graphs G and G ˚ 1 with their chord diagrams. The chord diagram for
G ˚ 1 is obtained by flipping one side of the circle divided by the chord representing 1.

NGpyq ´ pNGpxq Y txuq and then switching labels of x and y, see Figure 1. Another graphical
description was given in Oum [Oum05] along with the proof of the following well-known fact:

G ^ xy ^ yz “ G ^ xz.

Two graphs are pivot-equivalent if one is obtained from the other by a sequence of pivotings. A
graph H is a pivot-minor of a graph G if H is an induced subgraph of a graph pivot-equivalent
to G.

In Section 2, we provide motivation for the vertex-minor theory by exploring the concepts
related to circle graphs. In Sections 3 and 4, we review some basic properties of local equivalences
and vertex-minors. In Sections 5–8, we survey the cut-rank function of a graph, which is a
connectivity function for vertex-minors. In Sections 9 and 10, we give structural theorems for
the vertex-minor, and in Section 11, we present recent progress on χ-boundedness for vertex-
minor-closed classes of graphs. Section 12 provides some algorithmic results on vertex-minors,
and in Sections 13 and 14, we review interlace polynomials and isotropic systems, respectively.
Section 15 concludes this survey with several conjectures motivated by the Graph Minors Project
of Robertson and Seymour.

2 Circle graphs and vertex-minors

Circle graphs are one of the major examples of classes of graphs closed under taking vertex-
minors. A circle graph is the intersection graph of chords in a circle. In other words, a circle
graph is represented by a chord diagram where vertices are chords and two vertices are adjacent
if and only if they are intersecting. It is straightforward to see that if G is a circle graph, then so
is G˚v for every vertex v of G; this can be achieved by taking the chord represented by v in the
chord diagram representing G and reversing one side of the circle to obtain the chord diagram
of G ˚ v, see Figure 2. Since deleting a chord in a chord diagram corresponds to deleting a
vertex in the associated circle graph, every vertex-minor of a circle graph is also a circle graph.

Bouchet [Bou94] proved the following analog of Kuratowski’s theorem on planar graphs for
circle graphs. Lee [Lee17] presented an alternative proof.

Theorem 2.1 (Bouchet [Bou94]). A graph is a circle graph if and only if it has no vertex-minor
isomorphic to W5, F7, or W7 in Figure 3.
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Figure 3: Vertex-minor obstructions for the class of circle graphs.
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Bipartite circle graph

Figure 4: Planar graphs and bipartite circle graphs.

Robertson and Seymour [RS86] proved one of the central theorems in the graph minor theory,
that is, the class of graphs with no minor isomorphic to a graph H has bounded tree-width if
and only if H is planar. Geelen, Kwon, McCarty, and Wollan [GKMW23] proved an analogous
theorem for vertex-minors with circle graphs. The definition of the rank-width will be reviewed
in Section 5.

Theorem 2.2 (Geelen, Kwon, McCarty, and Wollan [GKMW23]). The class of graphs with
no vertex-minor isomorphic to a graph H has bounded rank-width if and only if H is a circle
graph.

As planar graphs play an important role in the graph minor theory, circle graphs play
a similar role in the vertex-minor theory, witnessed by the previous theorem. This is not a
coincidence because there is a connection between planar graphs and bipartite circle graphs as
follows. The fundamental graph of a graph G with respect to a maximal acyclic subgraph T
of G is a bipartite graph H with a bipartition pEpT q, EpGq ´ EpT qq such that x P EpT q and
y P EpGq ´ EpT q are adjacent in H if and only if x is in the unique cycle of T ` y.

Theorem 2.3 (de Fraysseix [dF81]). A bipartite graph is a circle graph if and only if it is a
fundamental graph of a planar graph.

Figure 4 illustrates a proof of Theorem 2.3. The class of bipartite circle graph is closed
under taking pivot-minors, and it is related to planar graphs with minors. Let H be a bipartite
circle graph which is the fundamental graph of a planar graph G with respect to a maximal
acyclic subgraph T . Then for each x P EpT q and y P EpGq ´ EpT q,

(a) H ´ x is the fundamental graph of G{x with respect to T {x,

(b) H ´ y is the fundamental graph of G ´ y with respect to T , and

(c) if xy P EpHq, then H ^ xy is the fundamental graph of G with respect to T ´ x ` y.

More generally, pivot-minors of bipartite graphs are associated with minors of binary matroids,
see Oum [Oum05].

Conjectures and theorems on pivot-minors sometimes imply their counterpart on minors of
graphs and minors of binary matroids. For instance, Geelen and Oum [GO09] proved a pivot-
minor analog of Theorem 2.1 and their result implies Kuratowski’s theorem. They showed that
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Figure 5: The cycle graph Cn on n vertices has at least 2tpn´4q{2u pairwise non-isomorphic
vertex-minors locally equivalent to Cn´1. This can be seen from Cn´1 ˚ vn´2 ˚ vn´1 by applying
local complementations at some of vertices in tv2, v4, v6, . . . , v2tpn´4q{2uu.

there is a list L of 15 graphs such that a graph is a circle graph if and only if it has no pivot-
minor isomorphic to any graph in L. In L, there are exactly three bipartite graphs F7, H1, and
H2, where H1 and H2 are fundamental graphs of K3,3 and K5, respectively. Now we explain
how this implies Kuratowski’s theorem. Let G be a non-planar graph. Then its fundamental
graph H is a non-circle bipartite graph by Theorem 2.3. Hence H has a pivot-minor isomorphic
to F7, H1, or H2 by Geelen and Oum [GO09]. Equivalently, G has a minor isomorphic to a
graph G1 which has F7, H1, or H2 as a fundamental graph. Note that F7 is a fundamental graph
of the Fano matroid, and a connected binary matroid is determined by its fundamental graph
up to duality. If G1 has a fundamental graph isomorphic to F7, then the cycle matroid MpG1q

of G1 is isomorphic to the Fano matroid or its dual, contradicting the well-known fact that the
Fano matroid is not regular. Hence G1 is isomorphic to H1 or H2. Then MpG1q is isomorphic
to one of MpK3,3q, MpK5q, and their duals. Because neither M˚pK3,3q nor M˚pK5q is graphic,
MpG1q is isomorphic to MpK3,3q or MpK5q. As every 3-connected graph is determined by its
cycle matroid [Whi33], G1 is isomorphic to either K3,3 or K5. Therefore, G contains a minor
isomorphic to K3,3 or K5, implying Kuratowski’s theorem.

3 Vertex-minors with one fewer vertex

For a graph G and a vertex v, there can be exponentially many vertex-minors of G on V pGq ´

tvu, even if we count vertex-minors up to isomorphisms. For instance, the cycle graph on
n vertices has at least 2Ωpnq non-isomorphic vertex-minors on n ´ 1 vertices; see Figure 5.
However, the following theorem, proved by Bouchet and Fon-Der-Flaass independently, ensures
that essentially there are only three ways to remove one vertex to have a vertex-minor.

Theorem 3.1 (Bouchet [Bou88a, (9.2)] and Fon-Der-Flaass [FDF88, Corollary 4.3]). Let H be
a vertex-minor of a graph G and v be a vertex in V pGq ´ V pHq. Then H is a vertex-minor of
one of G ´ v, G ˚ v ´ v, and G ^ vw ´ v for some neighbor w of v.

We note that the choice of w in Theorem 3.1 does not change the outcome up to pivot-
equivalence, as pG ^ vwq ´ v “ ppG ^ vw1q ´ vq ^ ww1 for distinct neighbors w and w1 of v
in G. Bouchet [Bou88a] proved Theorem 3.1 using isotropic systems, which will be reviewed in
Section 14. Fon-Der-Flaass [FDF88] proved the theorem in graph-theoretic notions. Sometimes
it is convenient to use the following form presented in Geelen and Oum [GO09, Lemma 3.2].

Lemma 3.2 (Geelen and Oum [GO09, Lemma 3.1]). Let G be a graph and v and w be vertices.

(i) If v ‰ w and v is non-adjacent to w, then pG˚wq´v, pG˚w ˚vq ´v, and pG˚wq^vv1 ´v
for some neighbor v1 of v in G˚w are locally equivalent to G´v, pG˚vq´v, and G^vv2 ´v
for some neighbor v2 of v in G, respectively.
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Figure 6: Local complementations are not commutable.

(ii) If v ‰ w and v is adjacent to w, then pG˚wq ´ v, pG˚w ˚ vq ´ v, and pG˚wq ^ vv1 ´ v for
some neighbor v1 of v in G˚w are locally equivalent to G´ v, G^ vv2 ´ v, and pG˚ vq ´ v
for some neighbor v2 of v in G, respectively.

(iii) If v “ w, then pG ˚wq ´ v, pG ˚w ˚ vq ´ v, and pG ˚wq ^ vv1 ´ v for some neighbor v1 of v
are locally equivalent to pG ˚ vq ´ v, G ´ v, and G ^ vv2 ´ v for some neighbor v2 of v,
respectively.

Lemma 3.2 immediately implies Theorem 3.1. If H is a vertex-minor of a graph G and
v P V pGq ´ V pHq, then there is a graph G1 locally equivalent to G such that H is an induced
subgraph of G1 ´ v. By successively applying Lemma 3.2, we deduce that G1 ´ v is locally
equivalent to one of G ´ v, G ˚ v ´ v, and G ^ vw ´ v for some neighbor w of v.

4 Various properties about local equivalence of graphs

Local complementations do not commute; see Figure 6. Hence when we enumerate a sequence
of local complementations, there might have many vertices appearing more than once. Fon-Der-
Flaass [FDF88] showed that for every pair of local equivalent graphs, there is a good sequence
of local complementations and pivotings avoiding redundancy.

Theorem 4.1 (Fon-Der-Flaass [FDF88, Corollary 4.2]). Let G and H be locally equivalent
graphs. Then there is a sequence of local complementations and pivotings such that all vertices
used for local complementations and all ends of edges used for pivotings appear only once.

Pivot-equivalent graphs can be explained by a matrix operation originated from Tucker [Tuc60].
For a V ˆ V matrix A and a subset X Ď V , we write ArXs to denote its X ˆ X principal sub-
matrix. Let

A “

X Y
ˆ ˙

X α β
Y γ δ

.

If ArXs “ α is nonsingular, then let

A ˚ X “

X Y
ˆ ˙

X α´1 α´1β
Y ´γα´1 δ ´ γα´1β

.

This operation is called the pivoting or the principal pivoting. Tucker [Tuc60] proved that
pA˚XqrY s is nonsingular if and only if ArX△Y s is nonsingular. Here, X△Y “ pX´Y qYpY ´Xq.

Let us write ApGq to denote the adjacency matrix of a graph G over the binary field. It
turns out that

ApG ^ uvq “ ApGq ˚ tu, vu.

Thus we observe the following.

Lemma 4.2. Two graphs G and H on the vertex set V are pivot-equivalent if and only if
ApGq “ ApHq ˚ X for some X Ď V with nonsingular ApHqrXs.
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This means that if H “ G ^ e1 ^ e2 ¨ ¨ ¨ ^ ek, then V pe1q△V pe2q△ ¨ ¨ ¨△V pekq determines H
and conversely if H and G are pivot-equivalent, then we can choose edges e1, e2, . . ., ek such
that H “ G ^ e1 ^ e2 ¨ ¨ ¨ ^ ek and V peiq X V pejq “ H for all i ‰ j, because for any nonsignular
non-trivial skew-symmetric matrix X, one can find a 2 ˆ 2 nonsingular principal submatrix to
apply pivoting.

Also, note that if ApGq “ ApHq˚X, then ApGqrY s is nonsingular if and only if ApHqrX△Y s

is nonsingular by Tucker [Tuc60]. So we deduce the following.

Lemma 4.3. Let G and H be graphs on the vertex set V . Then G and H are pivot-equivalent
if and only if there exists X Ď V such that

tY : Y Ď V and detApGqrY s ‰ 0u “ tY△X : Y Ď V and detApHqrY s ‰ 0u.

The above lemma is the essence of even binary delta-matroids. For a graph G on V , the pair
pV,Fq with F “ tX Ď V : detApGqrXs ‰ 0u defines even binary delta-matroids introduced
by Bouchet [Bou88b]. Bouchet introduced delta-matroids more generally [Bou87a] and pivot-
minors of graphs can be explained as minors of even binary delta-matroids. This relation is
useful when studying pivot-minors of graphs.

Here is another theorem on two locally equivalent graphs.

Theorem 4.4 (Fon-Der-Flaass [FDF89, FDF96]). Let G and H be locally equivalent graphs.
Then there are vertices v1, . . . , vk and edges e1, . . . , eℓ, e

1
1, . . . , e

1
m such that

(i) ei P EpG ^ e1 ^ ¨ ¨ ¨ ^ ei´1q for 1 ď i ď ℓ,

(ii) tv1, . . . , vku is an independent set in G ^ e1 ^ ¨ ¨ ¨ ^ eℓ,

(iii) e1
j P EpG ^ e1 ^ ¨ ¨ ¨ ^ eℓ ˚ v1 ˚ ¨ ¨ ¨ ˚ vk ^ e1

1 ^ ¨ ¨ ¨ ^ e1
j´1q for 1 ď j ď m, and

(iv) H “ G ^ e1 ^ ¨ ¨ ¨ ^ eℓ ˚ v1 ˚ ¨ ¨ ¨ ˚ vk ^ e1
1 ^ ¨ ¨ ¨ ^ e1

m.

Fon-Der-Flaass published his proof in Russian. A paper by the authors [KO23] includes a
proof based on isotropic systems. As an easy consequence of Theorem 4.4, Fon-Der-Flaass [FDF96]
proved that two locally equivalent bipartite graphs are pivot-equivalent. This was a conjecture
of Bouchet [Bou90, Conjecture 3.5] and is also implied by Theorem 5.3.

Theorem 4.5 (Fon-Der-Flaass [FDF88, Theorem 2.2]). If a graph G is locally equivalent to a
tree T , then G has a subgraph isomorphic to T .

Theorem 4.5 implies the following theorem, which was initially conjectured by Mulder at
the Oberwolfach meeting in 1986. Bouchet also solved this conjecture independently.

Theorem 4.6 (Bouchet [Bou88c] and Fon-Der-Flaass [FDF88]). If two trees are locally equiv-
alent, then they are isomorphic.

Jeong, Kwon, and Oum [JKO14] used the idea of the above theorem to prove the following
theorem on block graphs. A block graph is a graph in which every 2-connected induced subgraph
is a complete graph. A vertex is simplicial if its neighbors are pairwise adjacent.

Theorem 4.7 (Jeong, Kwon, and Oum [JKO14, Theorem 1.4]). If two block graphs without
simplicial vertices of degree 2 are locally equivalent, then they are isomorphic.

Theorem 4.8 (Fon-Der-Flaass [FDF88, Theorem 5.1]). Let G be a graph and n ě 5. If G is
locally equivalent to Cn, then G has a subgraph isomorphic to Cn.

Theorem 4.8 implies that if an n-vertex bipartite graph is locally equivalent to a cycle, then
n is even, proved by Allys [All94, Lemma 5.2] later by using isotropic systems. Another proof
of this fact is presented in the appendix of [KO23].
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5 Cut-rank functions

For a graph G, the cut-rank function ρG is defined over the subsets X of V pGq such that ρGpXq

is the rank of the X ˆ pV pGq ´ Xq matrix over the binary field whose entry is 1 if and only if
two vertices representing the column and the row are adjacent in G. Cut-rank functions play
an important role in the study of vertex-minors because they are invariant under taking local
complementations. As elementary row operations do not change the rank and 1 ` 1 “ 0 in the
binary field, it is easy to observe the following theorem.

Theorem 5.1 (Bouchet [Bou89, Corollary 2]; see Oum [Oum05]). If G and H are locally
equivalent, then they have an identical cut-rank function.

Since deleting a row or a column does not increase the rank of a matrix, we deduce the
following corollary.

Corollary 5.2. If H is a vertex-minor of a graph G, then ρHpX X V pHqq ď ρGpXq for all
X Ď V pGq.

Bouchet [Bou90] conjectured that the converse of Theorem 5.1 is true but Fon-Der-Flaass
disproved the conjecture. A counterexample with 10 vertices is presented in [FDF96]. According
to a computer search, the smallest example is a pair of two graphs on 9 vertices that are not
locally equivalent but have an identical cut-rank function.

The converse of Theorem 5.1 is true for bipartite graphs in the stronger sense that we only
need pivoting. This follows from the result of Seymour [Sey88].

Theorem 5.3. Let G1, G2 be bipartite graphs on the same set V of vertices. If

ρG1pXq “ ρG2pXq for all subsets X Ď V ,

then G1 is pivot-equivalent to G2.

Proof. We may assume that both G1 and G2 are connected because the cut-rank function of a
graph determines components. For i “ 1, 2, let pSi, Tiq be a bipartition of V pGiq, let Ai be an
Si ˆ V matrix over the binary field such that for v P Si and w P V ,

Aipv, wq “

$

’

&

’

%

1 if v “ w,

1 if w P Ti and v and w are adjacent in Gi,

0 otherwise.

For i “ 1, 2, let Mi be the binary matroid represented by Ai and let λi be the matroid
connectivity function of Mi, that is λipXq “ ripXq ` ripV ´Xq ´ ripV q for the rank function ri
of Mi. This construction is to make Gi the fundamental graph of Mi with respect to Si. Then,
it is well known that the matroid connectivity function coincides with the cut-rank function of
its fundamental graph, that is ρGipXq “ λipXq, see [Oum05].

Seymour [Sey88] showed that if two connected binary matroids M1 and M2 have the same
matroid connectivity function, then M1 “ M2 or M1 “ M˚

2 . We may assume that M1 “ M2

because we may swap S2 and T2 to replace M2 with M˚
2 . Any two fundamental graphs of a

binary matroid are pivot-equivalent, see Oum [Oum05, Corollary 3.5] and therefore G1 and G2

are pivot-equivalent.

Motivated by Corollary 5.2, we can define width parameters of graphs in terms of cut-rank
functions so that its value does not increase when we take vertex-minors. The most well-known
example is the rank-width, introduced by Oum and Seymour [OS06], as a dense analog of tree-
width. A rank-decomposition of a graph G is a pair pT, Lq of a tree T of maximum degree at
most 3 and a bijection L from V pGq to the set of leaves of T . For every edge e, T ´ e gives a
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partition pAe, Beq of the leaves of T and the width of an edge e in T is defined as ρGpL´1pAeqq.
The width of pT, Lq is defined as the maximum width of all edges of T . The rank-width of a
graph G is the minimum width of all rank-decompositions of G. If |V pGq| ă 2, then it admits
no rank-decompositions and we define the rank-width to be 0. By Corollary 5.2, if H is a
vertex-minor of G, then the rank-width of H is less than or equal to that of G.

One can also define a dense analog of path-width. The linear rank-width of a graph G is the
minimum k such that there is an ordering v1, v2, . . . , vn of all vertices of G with the property
that

ρGptv1, . . . , viuq ď k

for all i “ 1, 2, . . . , n :“ |V pGq|. Again, if H is a vertex-minor of G, then the linear rank-width
of H is less than or equal to that of G.

We also have a dense analog of tree-depth, called the rank-depth, introduced by DeVos,
Kwon, and Oum [DKO20]. A decomposition of a graph G is a pair pT, σq of a tree T having at
least one internal node and a bijection σ from V pGq to the set of leaves of T . Note that a rank-
decomposition is a decomposition in which every node in the tree has degree at most 3. The
radius of a decomposition pT, σq is the radius of the tree T . Each internal node v of T induces
a partition Pv of V pGq by taking vertices of G mapped to the same component of T ´ v by σ
as one part. The ρG-width of a partition Pv is defined as maxtρGp

Ť

XPQXq : H ‰ Q Ď Pvu.
The width of a decomposition pT, σq is the maximum width of Pv among all internal nodes
v of T . The rank-depth of a graph G [DKO20] is the minimum integer k such that G has a
decomposition of radius at most k and width at most k. Again, if H is a vertex-minor of G,
then the rank-depth of H is less than or equal to that of G.

From definitions, the rank-width is less than or equal to the linear rank-width and the rank-
depth. The linear rank-width is at most the square of the rank-depth, which is explained below.
Let G be a graph with rank-depth k. Then G admits a decomposition pT, σq of radius at most k
and width at most k. By the depth-first search on T , we can order the leaves of T and so the
vertices v1, . . . , vn of G. Since T has radius at most k, for each 1 ď m ď n, there are at most
k internal nodes x1, . . . , xk1 of T such that tv1, . . . , vmu is the union of X1, . . . , Xk1 for some

Xi P Pxi . Thus, ρGptv1, . . . , vmuq ď
řk1

i“1 ρGpXiq ď k2.
The rank-width and the linear rank-width have equivalent graph parameters defined earlier,

which are the clique-width [CER93, CO00] and the linear clique-width [GW05, LR07], respec-
tively. For the rank-depth, there is also an equivalent concept, called the shrub-depth [GHN`12,
GHN`19], which is only defined for classes of graphs. We omit definitions of the clique-width,
linear clique-width, and shrub-depth in this survey.

Theorem 5.4. Let rw, ℓrw, cw, and ℓcw be the rank-width, linear rank-width, clique-width,
and linear clique-width of a graph G. Then

(i) rw ď cw ď 2rw`1 ´ 1 [OS06],

(ii) ℓrw ď ℓcw ď 2ℓrw ` 1 [Oum17], and

(iii) a class of graphs has bounded shrub-depth if and only if it has bounded rank-depth [DKO20].

6 Vertex-minors certifying large cut-rank

By Corollary 5.2, if G has a vertex-minor H having a cut of large cut-rank, then all cuts
of G inducing the same cut on H will have large cut-rank. The following theorem shows that
the converse holds. This is an analog of Tutte’s linking theorem [Tut65] on matroids; see
Oxley [Oxl11, Section 8.5].

Theorem 6.1 (Oum [Oum05, Theorem 6.1]). Let G be a graph and X and Y be disjoint subsets
of V pGq. The following are equivalent.
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Figure 7: Illustrations of Theorem 6.2.

(i) ρGpZq ě k for all Z with X Ď Z Ď V pGq ´ Y .

(ii) G has a vertex-minor H on X Y Y such that ρHpXq ě k.

(iii) G has a pivot-minor H on X Y Y such that ρHpXq ě k.

Theorem 6.1 allows us to find a small vertex-minor certifying that any cuts separating a
pair of disjoint sets X and Y have large cut-rank. However, often it is convenient to have such
a certificate while keeping the adjacency between X and Y . The following theorem provides
such a small vertex-minor.

Theorem 6.2 (Geelen, Kwon, McCarty, and Wollan [GKMW23, Lemma 4.3]). There is a
function f : Z Ñ Z such that for every integer k ą 0, if G is a graph and X and Y are disjoint
subsets of V pGq such that ρGrXYY spXq ă k and

ρGpZq ě fpkq for all Z with X Ď Z Ď V pGq ´ Y ,

then there exists a graph H locally equivalent to G such that HrX Y Y s “ GrX Y Y s and either

(i) there is a set L Ď V pHq ´ pX Y Y q of size k such that ρHrXYLspLq “ ρHrY YLspLq “ k, or

(ii) there are disjoint subsets L1, L2 Ď V pHq ´ pX Y Y q of size k such that ρHrXYL1spL1q “

ρHrL1YL2spL1q “ ρHrY YL2spL2q “ k, all vertices in L1 have the same set of neighbors in
Y , and all vertices in L2 have the same set of neighbors in X.

See Figure 7 for illustrations of Theorem 6.2. The graph H with L or L1 Y L2 obtained
from Theorem 6.2 certifies that any cuts separating X and Y have large cut-rank as shown by
the following proposition. This is also described in [GKMW23] as a motivation of Theorem 6.2.
For an X ˆ Y matrix A, if X 1 Ď X and Y 1 Ď Y , then we denote by ArX 1, Y 1s the X 1 ˆ Y 1

submatrix of A.

Proposition 6.3. Let H be a graph and let X and Y be disjoint subsets of V pHq.

(i) If there is a set L Ď V pHq ´ pX Y Y q such that ρHrXYLspLq “ ρHrY YLspLq “ |L|, then
ρHpZq ě |L|{2 for every X Ď Z Ď V pHq ´ Y .

(ii) If there are disjoint subsets L1, L2 Ď V pGq´pXYY q such that ρHrXYL1spL1q “ ρHrL1YL2spL1q “

ρHrY YL2spL2q “ |L1| “ |L2|, then ρHpZq ě |L1|{3 for every X Ď Z Ď V pHq ´ Y .

Proof. Let A be the adjacency matrix of H over the binary field. Let Z be a set such that
X Ď Z Ď V pHq ´ Y .

(i) We have that ρHpZq “ rankpArZ, V pHq ´ Zsq ě rankpArX,L ´ Zsq ě rankpArX,Lsq ´

|L X Z| “ ρHrXYLspLq ´ |L X Z| “ |L ´ Z|. Similarly, ρHpZq ě rankpArL X Z, Y sq ě |L X Z|.
Therefore, 2ρHpZq ě |L|.
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(ii) Note that ρHpZq ě rankpArX,L1 ´ Zsq ě |L1 ´ Z| and ρHpZq ě rankpArL2 X Z, Y sq ě

|L2XZ|. Observe that ρHpZq ě rankpArL1XZ,L2´Zsq ě rankpArL1, L2sq´|L1´Z|´|L2XZ| “

|L1| ´ |L1 ´ Z| ´ |L2 X Z|. Hence 3ρHpZq ě |L1|.

Lee and Oum [LO23b] proved the following extension of Theorem 6.1.

Theorem 6.4 (Lee and Oum [LO23b]). Let k, ℓ be non-negative integers. Let G be a graph
and Q, R, S, T be subsets of V pGq such that Q X R “ S X T “ H,

ρGpZ1q ě k for all Z1 with Q Ď Z1 Ď V pGq ´ R,

and
ρGpZ2q ě ℓ for all Z2 with S Ď Z2 Ď V pGq ´ T .

Then there is a pivot-minor H of G such that H contains Q Y R Y S Y T , |V pHq| ă |Q Y R Y

S Y T | ` p2ℓ ` 1q22k,

ρHpZ1q ě k for all Z1 with Q Ď Z1 Ď V pHq ´ R,

and
ρHpZ2q ě ℓ for all Z2 with S Ď Z2 Ď V pHq ´ T .

7 Split decompositions and prime graphs

A split of a graph G is a partition pX,Y q of the vertex set of G such that |X|, |Y | ě 2 and
ρGpXq ď 1. Note that ρGpXq ď 1 if there are subsets X 1 Ď X and Y 1 Ď V pGq ´ X for which
the set of adjacent pairs of a vertex a P X and a vertex b P V pGq ´ X is precisely X 1 ˆ Y 1.
We say a graph is prime if it has no splits. By Theorem 5.1, locally equivalent graphs have the
same splits and therefore if a graph is locally equivalent to a prime graph then it is prime. We
will discuss prime graphs and their vertex-minors in Section 8.

If a graph admits a split, it can be built by the 1-join of two graphs. The 1-join of two
graphs G1 and G2 with marker vertices v1 P V pG1q and v2 P V pG2q is defined to be a graph
obtained from the disjoint union of G´v1 and G´v2 by adding an edge between every neighbor
of v1 in G1 and every neighbor of v2 in G2. Whenever a graph G admits a split pX,Y q, we
choose v1 P Y and v2 P X so that v1 have neighbors in X and v2 have neighbors in Y if there
is at least one edge between X and Y . Then G is the 1-join of GrX Y tv1us and GrY Y tv2us

with v1, v2. Thus if G is not prime, it can be decomposed into two smaller graphs with at least
three vertices by the 1-join operation.

Now starting from a set tGu consisting of a single graph, we recursively pick a graph H in the
set having a split and replace it with two smaller graphs so that their 1-join is H as long as H is
not a complete graph or a star, until no further replacement is possible. We can associate a tree
by having one node for each graph in the resulting set and adding an edge between two nodes
if the corresponding pairs have marker vertices that are used when making the 1-join at some
point. This decomposition is called the split decomposition of a graph. Cunningham [Cun82]
proved that a connected graph has a unique split decomposition and therefore this is sometimes
called a canonincal decomposition. Note that complete graphs and stars have exponentially
many splits and for the sake of having the unique split decomposition, the recursive process
stops at those graphs. If we do not care much about the uniqueness, then we could decompose
a connected graph into prime graphs and build any graph from prime graphs by repeatedly
taking 1-join.

There are linear-time algorithms to find a split decomposition [Dah00,CdMR12].
Prime graphs are important building blocks of graphs, analogous to the fact that every con-

nected graph can be decomposed into blocks. As planar graphs can be decided by investigating
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Figure 8: Unavoidable induced subgraphs in prime graphs that are not cycles.

the planarity of blocks, there are properties of graphs that can be determined by the properties
of prime graphs.

Here is a theorem on the unique representation of circle graphs up to local equivalence. This
is analogous to the theorem that every 3-connected planar graph has a unique embedding on
the sphere, see [MT01, Section 2.5].

Theorem 7.1 (Bouchet [Bou87c]). Prime circle graphs on at least 5 vertices have a unique
representation up to cyclic equivalence.

Furthermore, if G1 and G2 are circle graphs, then so is their 1-join [Bou87c, (4.2)]. We can
rewrite as follows because any prime induced subgraph is an induced subgraph of some graph
in the canonical decomposition.

Theorem 7.2 (Bouchet [Bou87c]). A graph is a circle graph if and only if all of its prime
induced subgraphs are circle graphs.

So in order to decide whether a graph is a circle graph, it is enough to check whether all
graphs in its canonical decomposition are circle graphs.

A similar property of Theorem 7.2 holds for graphs of rank-width at most k. As the rank-
width of the 1-join of two graphs is equal to the maximum rank-width of G or H, it is easy to
deduce the following.

Theorem 7.3 (Hliněný, Oum, Seese, and Gottlob [HOSG08, Theorem 4.3]). The rank-width
of a graph is the maximum rank-width of all its prime induced subgraphs.

The class of graphs with rank-width at most one is precisely the class of graphs without
prime induced graphs having at least four vertices. This class is also known as the class of
distance-hereditary graphs, and we will discuss it in Section 9.2.

8 Chain theorems

Graph theory employs chain theorems as a means to reduce the size of a graph while maintaining
some notion of connectedness. A detailed overview of these theorems can be found in Sections
7.2 and 7.3 of Chapter 2 in [GGL95], which offer a comprehensive survey on chain theorems
of graph minors. This survey describes variants of Tutte’s chain theorem and examines their
applications.

A significant chain theorem for vertex-minors was proven by Bouchet [Bou87d]. This theo-
rem serves as a critical tool used by Bouchet for recognizing circle graphs in polynomial time.

Theorem 8.1 (Bouchet [Bou87d]). Let G be a prime graph with at least 6 vertices. Then G
has a prime vertex-minor H with |V pHq| “ |V pGq| ´ 1.

Note that no graph on four vertices is prime and all prime graphs on five vertices are
locally equivalent to C5 [Bou87c, Lemma 3.1]. Gabor, Hsu, and Supowit [GSH89] provide an
Op|V pGq| ˆ |EpGq|q-time algorithm recognizing a circle graph for an input graph G, using the
next result.
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Figure 9: The graph H13. No vertex v other than the unique vertex adjacent to all other vertices
has the property that H13 ´ v or H13 ˚ v ´ v is prime.

Theorem 8.2 (Gabor, Hsu, and Supowit [GSH89]). Every prime graph with at least 5 vertices
contains an induced subgraph isomorphic to a cycle of length at least 5 or a graph in Figure 8.

Allys proved a strengthening of Theorem 8.1 by using isotropic systems.

Theorem 8.3 (Allys [All94]). Let G be a prime graph with at least 6 vertices. Then G has a
vertex v such that G ´ v or G ˚ v ´ v is prime.

Oum [Oum23] and Lee and Oum [LO23a] proved related results for variants of primeness.
Kim and Oum extended the theorem of Allys (Theorem 8.3) as follows. Let Hn be a graph on
tv1, v2, . . . , vnu such that two vertices vi and vj with i ă j are adjacent if and only if i is even
or j is odd. See Figure 9 for an illustration of H13.

Theorem 8.4 (Kim and Oum [KO23]). Let G be a prime graph with at least 6 vertices and x
be a vertex of G. Then G has a vertex v ‰ x such that G ´ v or G ˚ v ´ v is prime, unless G is
isomorphic to H|V pGq|, x is adjacent to all other vertices of G, and |V pGq| is odd.

Theorem 8.4 is proved by using the following theorem on the number of vertices that admit
at least two ways to be removed while keeping the primeness.

Theorem 8.5 (Kim and Oum [KO23]). Let G be a prime graph with at least 4 vertices.

(i) G has at least two vertices v such that at least two of G ´ v, G ˚ v ´ v, and G ^ vw ´ v
for some neighbor w of v are prime, unless G is locally equivalent to C5.

(ii) G has at least three vertices v such that at least two of G ´ v, G ˚ v ´ v, and G ^ vw ´ v
for some neighbor w of v are prime, unless G is locally equivalent to a cycle or a graph
consisting of at least three internally-disjoint paths between two fixed vertices, none of
which has length 2.

Here is an easy corollary of the previous theorem.

Corollary 8.6 (Kim and Oum [KO23]). Let G be a prime graph with at least 6 vertices. For
every pair of vertices x, y P V pGq, G has a prime vertex-minor H containing both x and y such
that |V pHq| “ |V pGq| ´ 1.

The following theorem concerns the number of ways to obtain a fixed graph H as a vertex-
minor.

Theorem 8.7 (Geelen and Oum [GO09, Theorem 1.10]). Let H be a vertex-minor of G. If
|V pGq| ě 2|V pHq|, then there is a vertex v such that at least two of G´v, G˚v´v, and G^vw´v
for some neighbor w of v have H as a vertex-minor.

Theorem 8.7 immediately implies the following.

Theorem 8.8 (Geelen and Oum [GO09, Theorem 1.3]). Let G be a class of graphs closed under
taking vertex-minors. If every vertex-minor-minimal graph not in G has at most k vertices, then
every pivot-minor-minimal graph not in G has at most 2k ´ 1 vertices.
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Geelen proved a strengthening of Theorem 8.1 in his Ph.D. thesis, analogous to the splitter
theorem for 3-connected matroids by Seymour [Sey80]. The proof is based on purely graph-
theoretic methods.

Theorem 8.9 (Geelen [Gee96, Corollary 5.11]). Let G and H be prime graphs such that 4 ď

|V pHq| ă |V pGq|. If H is a vertex-minor of G, then there is a sequence of prime graphs
G1 :“ G,G2, . . . , Gm such that

• for each i ă m, Gi`1 is a vertex-minor of Gi with |V pGi`1q| “ |V pGiq| ´ 1 and

• Gm is isomorphic to H.

9 Forbidden vertex-minor characterizations

Theorem 2.1 states that a graph is a circle graph if and only if it has no vertex-minor isomorphic
to W5, F7, or W7. In this section, we will review similar theorems on characterizing classes of
graphs in terms of forbidden vertex-minors.

9.1 Graphs with no vertex-minor isomorphic to W5

Geelen [Gee96] described the structure of graphs with no vertex-minors isomorphic to W5. We
denote the 3-dimensional cube graph by Q3.

Theorem 9.1 (Geelen [Gee96, Theorem 5.14]). A graph G has no vertex-minor isomorphic
to W5 if and only if one of the following holds.

(i) G is a circle graph.

(ii) G is locally equivalent to a graph isomorphic to W7, F7, or Q3.

(iii) G is the 1-join of two smaller graphs G1 and G2, both of which are graphs with no vertex-
minors isomorphic to W5.

9.2 Distance-hereditary graphs

A graph is distance-hereditary [BM86] if for every connected induced subgraph H and two
vertices x and y of H, the distance between x and y in H is equal to the distance between x
and y in G. Two vertices x and y are twins of a graph G if they have the same set of neighbors
in V pGq ´ tx, yu. Bandelt and Mulder [BM86] showed that all distance-hereditary graphs can
be built from K1 by creating twins and adding an isolated vertex or a pendant vertex to a
distance-hereditary graph. Oum [Oum05] observed that a graph is distance-hereditary if and
only if its rank-width is at most 1. Kwon and Oum [KO14b] showed the following obtained by
combining this observation with results of Bouchet [Bou88c,Bou87c].

Theorem 9.2 (Bouchet [Bou88c,Bou87c], Oum [Oum05], and Kwon and Oum [KO14b, The-
orem 4.1]). Let G be a graph. The following are equivalent.

(i) G is distance-hereditary.

(ii) G has rank-width at most 1.

(iii) G has no vertex-minor isomorphic to C5.

(iv) G is a vertex-minor of a tree.
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Figure 10: Vertex-minor obstructions for the class of graphs of linear rank-width 1.

9.3 Linear rank-width at most 1

It is easy to see that the rank-width of a graph is less than or equal to the linear rank-width
of a graph. So, the class of graphs of linear rank-width at most 1 is a subclass of the class of
distance-hereditary graphs. To describe the structure of graphs of linear rank-width at most 1,
Ganian [Gan11] defined thread graphs and proved that a graph is a thread graph if and only if
it has linear rank-width at most 1.

Here is a theorem characterizing the class of graphs of linear rank-width at most 1.

Theorem 9.3 (Adler, Farley, and Proskurowski [AFP14] and Kwon and Oum [KO14a, Theorem
4.3]). Let G be a graph. The following are equivalent.

(i) G has linear rank-width at most 1.

(ii) G has no vertex-minor isomorphic to any graphs in Figure 10.

(iii) G is a vertex-minor of a path.

Here is an interesting theorem on the linear rank-width of a tree.

Theorem 9.4 (Adler and Kanté [AK15]). For every forest T , the linear rank-width of T is
equal to the path-width of T .

9.4 Rank-width and linear rank-width

Theorem 9.5 (Oum [Oum05]). For each k, there exists a finite list of graphs each having at
most p6k`1 ´ 1q{5 vertices such that a graph has rank-width at most k if and only if it has no
pivot-minor isomorphic to a graph in the list.

Theorem 9.6 (Kanté, Kim, Kwon, and Oum [KKKO23]). For each k, there exists a finite list

of graphs each having at most 22
Opk2q

vertices such that a graph has linear rank-width at most k
if and only if it has no pivot-minor isomorphic to a graph in the list.

We can replace pivot-minors with vertex-minors in both Theorem 9.5 and Theorem 9.6 by
the following reason. If a graph G has another graph H as a vertex-minor, then there is a graph
G1 locally equivalent to G such that G1 has H as a pivot-minor. Therefore, if a graph class is
closed under taking vertex-minors and a graph H is a pivot-minor-minimal graph not in the
class, then H is also a vertex-minor-minimal graph not in the class. Note that Theorem 8.8
describes the other direction to obtain pivot-minor-minimal graphs not in a class from vertex-
minor-minimal graphs not in the class.

9.5 Well-quasi-ordering

So far we have witnessed several instances of graph classes closed under taking vertex-minors
that admit characterizations in terms of finitely many forbidden vertex-minors or pivot-minors.
The celebrated graph minors theorem of Robertson and Seymour [RS04] states that every proper
minor-closed class of graphs is characterized by a finite set of forbidden minors. This property
can be seen easily equivalent to the following statement; Every infinite sequence G1, G2, . . . of
graphs has a pair i ă j such that Gi is isomorphic to a minor of Gj .
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We can extend this to quasi-orders. A binary relation ĺ on X is a quasi-order if x ĺ x for
all x P X and x ĺ y and y ĺ z implies x ĺ z. A quasi-order ĺ on X is a well-quasi-ordering if
every infinite sequence of x1, x2, x3, . . . P X admits a pair i ă j such that xi ĺ xj . If so, we call
the set X well-quasi-ordered by the relation ĺ. The graph minors theorem can be equivalently
stated that graphs are well-quasi-ordered by the minor relation.

Motivated by the graph minors theorem, it is very natural to propose the following conjec-
tures.

Conjecture 9.7. Graphs are well-quasi-ordered by the vertex-minor relation.

Conjecture 9.8 (Oum [Oum12, Oum17]). Graphs are well-quasi-ordered by the pivot-minor
relation.

Oum [Oum08a] showed that graphs of bounded rank-width are well-quasi-ordered by the
pivot-minor relation, which implies that such graphs are well-quasi-ordered by the vertex-minor
relation.

Theorem 9.9 (Oum [Oum08a]). Graphs of bounded rank-width are well-quasi-ordered by the
pivot-minor relation.

Bouchet [Bou94] conjectured that circle graphs are well-quasi-ordered by the vertex-minor
relation. This is implied by the well-quasi-ordering of 4-regular graphs by the immersion re-
lation, proved by Robertson and Seymour [RS10]. The relation between the immersions on
4-regular graphs with their Eulerian circuits and vertex-minors of circle graphs was observed
by Kotzig [Kot68] and is described in the survey of Bouchet [Bou90].

Theorem 9.10 (Implied by Robertson and Seymour [RS10]; see McCarty [McC21]). Circle
graphs are well-quasi-ordered by the vertex-minor relation.

Pivot-minors of bipartite graphs are associated with minors of binary matroids, see Oum [Oum05].
Geelen, Gerards, and Whittle [GGW14] proved that for every fixed finite field F, F-representable
matroids are well-quasi-ordered by the minor relation. This in particular means that binary
matroids are well-quasi-ordered by the minor relation and so we deduce the following. As far
as the authors know, its proof is still being written.

Theorem 9.11 (Implied by Geelen, Gerards, and Whittle [GGW14]). Bipartite graphs are
well-quasi-ordered by the pivot-minor relation.

The line graph of a graph G is a graph on EpGq such that e, f P EpGq are adjacent in the
line graph if and only if e and f share a common end in G. Oum [Oum09] studied pivot-minors
of line graphs via minors of grafts, which are pairs pG,T q of a graph G and a set T Ď V pGq.
In the graft minors, contracting an edge e will make the new vertex belong to T if and only
if exactly one end of e belongs to T . This can be seen as minors of group-labelled graphs
where vertices have labels from the binary field. Geelen, Gerards, and Whittle announced that
while proving their theorem for matroids [GGW14], they proved that group-labelled graphs
with labels from a finite field are well-quasi-ordered by the minor relation and this implies that
grafts are well-quasi-ordered by the graft minor relations. Therefore, pivot-minors of line graphs
are well-quasi-ordered by the pivot-minor relation, based on [Oum09].

For two graphs H1 and H2, let C be the class of graphs having no vertex-minor isomorphic
to H1 or having no vertex-minor isomorphic to H2. Clearly, C is closed under taking vertex-
minors. If Conjecture 9.7 holds, then there will be a list L of finitely many graphs such that a
graph belongs to C if and only if it has no vertex-minor isomorphic to a graph in L. Each graph
in L is required to have both a vertex-minor isomorphic to H1 and a vertex-minor isomorphic
to H2. So the conjecture 9.7 implies that there are only finitely many vertex-minor-minimal
graphs containing both a vertex-minor isomorphic to H1 and a vertex-minor isomorphic to H2.
This is verified by Geelen and Oum [GO09] with an explicit bound by using Theorem 8.7.
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Theorem 9.12 (Geelen and Oum [GO09, Theorem 1.11]). For graphs H1 and H2, if G is a
vertex-minor-minimal graphs containing a vertex-minor isomorphic to H1 and a vertex-minor
isomorphic to H2, then

|V pGq| ď 2|V pH1q| ` 2|V pH2q| ´ 2.

It is open whether the analog holds for pivot-minors, which would be a consequence of
Conjecture 9.8.

Conjecture 9.13 (Lee and Oum [LO23b]). For graphs H1 and H2, up to isomorphisms, there
are only finitely many pivot-minor-minimal graphs containing a pivot-minor isomorphic to H1

and a pivot-minor isomorphic to H2.

10 Structural analysis of vertex-minor closed classes: Prelimi-
nary results

10.1 Unavoidable vertex-minors

Theorem 2.2 shows that every graph of sufficiently large rank-width has a vertex-minor isomor-
phic to a fixed circle graph. We review similar results for vertex-minors concerning other graph
parameters. We write nK2 for the disjoint union of n copies of K2.

Theorem 10.1. The following hold.

(i) For a positive integer n, every graph of sufficiently large rank-depth contains a vertex-
minor isomorphic to Pn [KMOW21].

(ii) For an edgeless graph H, every graph with sufficiently many vertices contains a vertex-
minor isomorphic to H [KO14b].

(iii) For a complete graph H, every connected graph with sufficiently many vertices contains a
vertex-minor isomorphic to H [KO14b].

(iv) For a positive integer n, every graph with sufficiently many edges contains a vertex-minor
isomorphic to Kn or nK2 [KO14b].

All these results are the best possible. For example, we cannot replace Pn in (i) with a graph
that is not a vertex-minor of a path. Theorem 10.1(i) solves a conjecture of Hliněný, Kwon,
Obdržálek, and Ordyniak [HKOO16], initially stated in terms of shrub-depth. Theorem 10.1(ii)-
(iv) are easy consequences of Ramsey’s theorem.

Here is a conjecture on graphs of large linear rank-width. Kanté and Kwon [KK18] verified
it for distance-hereditary graphs.

Conjecture 10.2 (Kanté and Kwon [KK18]). For a tree T , every graph of sufficiently large
linear rank-width contains a vertex-minor isomorphic to T .

What happens if we replace vertex-minors with pivot-minors? Oum [Oum09] proposed the
following conjecture on pivot-minor obstructions for graphs of large rank-width. This con-
jecture implies Theorem 2.2 because every circle graph is a vertex-minor of a bipartite circle
graph [BT16, Corollary 53].

Conjecture 10.3 (Oum [Oum09]). For a bipartite circle graph H, every graph G of sufficiently
large rank-width contains a pivot-minor isomorphic to H.

This conjecture is known to be true for some graphs G.

(i) It is true if G is bipartite by the theorem on binary matroids due to Geelen, Gerards, and
Whittle [GGW07], see [Oum05, Corollary 3.9].
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(ii) It is true if G is a pivot-minor of a line graph, shown by Oum [Oum09].

(iii) It is true if G is a circle graph by the result in the Ph.D. thesis of Johnson [Joh02, Theorem
2.5], as explained in Oum [Oum09].

The grid minor theorem of Robertson and Seymour [RS86] states that for an integer k ą 0,
every graph G of sufficiently large tree-width has a minor isomorphic to a kˆk grid. We remark
that Conjecture 10.3 implies the grid minor theorem. Let H be a planar graph obtained from
a pk ` 1q ˆ pk ` 1q grid by adding a new vertex adjacent to all vertices of degree at most 3.
Let FG and FH be fundamental graphs of G and H, respectively. By Theorem 2.3, FH is a
bipartite circle graph. Suppose that G has sufficiently large tree-width. Then by Robertson
and Seymour [RS91, (5.2)], G has large branch-width, and by Hicks and McMurray [HM07,
Theorem 4], MpGq has large branch-width. By [Oum05, Corollary 3.2], the rank-width of FG

equals to the branch-width of MpGq minus one. Thus, if Conjecture 10.3 holds, then FG has
a pivot-minor isomorphic to FH . Hence G has a minor X such that X has a fundamental
graph isomorphic to FH . As binary matroids are determined by their fundamental graphs up
to duality, the cycle matroid MpXq of X is isomorphic to MpHq or M˚pHq “ MpH˚q, where
H˚ is a dual graph of H. Note that H is 3-connected and so is H˚. Thus, by Whitney’s
2-isomorphism theorem [Whi33], X is isomorphic to H or H˚. Hence G has a minor isomorphic
to H or H˚. Because both H and H˚ contain a kˆk grid as an induced subgraph, we conclude
that G has a minor isomorphic to a k ˆ k grid.

For graphs of large linear rank-width, Dabrowski, Dross, Jeong, Kanté, Kwon, Oum, and
Paulusma [DDJ`21] conjectured the following. A caterpillar is a tree whose induced subgraph
with the vertices of degree larger than one is a path.

Conjecture 10.4 (Dabrowski, Dross, Jeong, Kanté, Kwon, Oum, and Paulusma [DDJ`21]).
For a caterpillar T , every graph of sufficiently large linear rank-width contains a pivot-minor
isomorphic to T .

This conjecture is verified for distance-hereditary graphs [DDJ`21].

10.2 Vertex-minor closures of sparse classes

Every graph of small tree-width, path-width, and tree-depth has small rank-width, linear rank-
width, and rank-depth, respectively.

Theorem 10.5. Let G be a graph.

(i) If the tree-width of G is k, then the rank-width of G is at most k ` 1 [Oum08b].

(ii) If the path-width of G is k, then the linear rank-width of G is at most k [AK15].

(iii) If the tree-depth of G is k, then the rank-depth of G is at most k [DKO20].

Recall that rank-width, linear rank-width, and rank-depth do not increase by taking vertex-
minors. Thus, if a class C of graphs has bounded tree-width, path-width, and tree-depth,
then the class of vertex-minors of graphs in C has bounded rank-width, linear rank-width, and
rank-depth, respectively. The converse holds as follows.

Theorem 10.6. Let C be a class of graphs.

(i) If C has bounded rank-width, then there is a class D of graphs of bounded tree-width such
that every graph in C is a vertex-minor of a graph in D [KO14a].

(ii) If C has bounded linear rank-width, then there is a class D of graphs of bounded path-width
such that every graph in C is a vertex-minor of a graph in D [KO14a].
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(iii) If C has bounded rank-depth, then there is a class D of graphs of bounded tree-depth such
that every graph in C is a vertex-minor of a graph in D [HKOO16].

Kwon and Oum [KO14a] showed that one can replace vertex-minors in (i) and (ii) with pivot-
minors. However, one cannot replace the vertex in (iii) with pivot-minors shown by [HKOO16].
Note that by Theorem 5.4(iii), we can state in Theorem 10.6(iii) in terms of shrub-depth, and
this is how Hliněný et al. [HKOO16] wrote their theorem.

11 χ-boundedness

For a graph G, we write χpGq to denote its chromatic number and ωpGq to denote the maximum
size of a clique. A class of graphs is χ-bounded if there is a function f : Z Ñ Z such that
χpGq ď fpωpGqq for every induced subgraph G of a graph in the class. Such a function f is
called the χ-bounding function.

Geelen (see [DK12]) conjectured in 2009 at the DIMACS workshop held at Princeton Uni-
versity that every proper vertex-minor closed class of graphs is χ-bounded. This had been
verified for circle graphs by Gyárfás [Gyá85,Gyá86], graphs of bounded rank-width and graphs
without a vertex-minor isomorphic to W5 by Dvořák and Král’ [DK12], and graphs with no
vertex-minor isomorphic to a fixed wheel graph by Choi, Kwon, Oum, and Wollan [CKOW19].

James Davies resolved the conjecture as follows.

Theorem 11.1 (Davies [Dav22b]). For every graph H, the class of graphs with no vertex-minor
isomorphic to H is χ-bounded.

Davies [Dav23b] also announced a strengthening of Theorem 11.1, which stated that the
class of graphs with no pivot-minor isomorphic to a fixed graph is χ-bounded.

If the χ-bounding function can be taken as a polynomial, then the class is called polynomially
χ-bounded. Kim, Kwon, Oum, and Sivaraman [KKOS20] proposed the following conjecture and
proved it when H is a cycle.

Conjecture 11.2 (Kim, Kwon, Oum, and Sivaraman [KKOS20]). For every graph H, the class
of graphs with no vertex-minor isomorphic to H is polynomially χ-bounded.

11.1 Circle graphs

Gyárfás [Gyá85, Gyá86] showed that circle graphs are χ-bounded but until recently it was an
open problem to decide whether or not circle graphs are polynomially χ-bounded. This is now
proven by Davies and McCarty.

Theorem 11.3 (Davies and McCarty [DM21]). If G is a circle graph, then χpGq ď 7ωpGq2.

Davies further improves the χ-bounding function.

Theorem 11.4 (Davies [Dav22a]). If G is a circle graph, then χpGq ď OpωpGq logpωpGqqq.

He also improves an existing lower bound for the χ-bounding function for circle graphs.

Theorem 11.5 (Davies [Dav22a]). For every positive integer k, there is a circle graph G such
that ωpGq ď k and χpGq ě k ln k ´ 2k.

Using Theorems 9.1, 11.3, and Theorem 1.2 of Kim, Kwon, Oum, and Sivaraman [KKOS20],
we deduce the following.

Theorem 11.6. The class of graphs having no vertex-minors isomorphic to W5 is polynomially
χ-bounded.
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11.2 Rank-width and polynomial χ-boundedness

Theorem 11.7 (Bonamy and Pilipczuk [BP20]). Every class of graphs with bounded rank-width
is polynomially χ-bounded.

Now, Theorem 11.7 is implied by results on twin-width, a relatively new width parameter
introduced by Bonnet, Kim, Thomassé, and Watrigant [BKTW22]. They showed that if a class
of graphs has bounded rank-width, then it has bounded twin-width. Bonnet, Geniet, Kim,
Thomassé, and Watrigant [BGK`20, BGK`21] showed that every class of graphs of bounded
twin-width is χ-bounded. Pilipczuk and Soko lowski [PS23] showed that the χ-bounding function
can be taken as a quasi-polynomial. Recently, Bourneuf and Thomassé [BT23] showed that a
class of graphs of bounded twin-width is polynomially χ-bounded. This implies Theorem 11.7.

Here is a corollary of Theorems 11.7 and 2.2 which verifies Conjecture 11.2 when H is a
circle graph.

Corollary 11.8. Let H be a circle graph. The class of graphs with no vertex-minor isomorphic
to H is polynomially χ-bounded.

Corollary 11.8 implies the result of Kim, Kwon, Oum, and Sivaraman [KKOS20] for graphs
having no vertex-minor isomorphic to Cn.

The degree of a χ-bounding function for the class of graphs of rank-width at most k cannot
be independent of k.

Theorem 11.9 (Bonamy and Pilipczuk [BP20, Lemma 5.2]). For every k, if f is a χ-bounding
polynomial for the class of graphs of rank-width at most k, then the degree of f is at least
Ωplog kq.

11.3 Linear rank-width and linear χ-boundedness

If the χ-bounded function can be taken as a linear, then the class is called linearly χ-bounded.

Theorem 11.10 (Nešetřil, Ossona de Mendez, Rabinovich, and Siebertz [NOdMRS21]). Every
class of graphs with bounded linear rank-width is linearly χ-bounded.

By Theorem 10.1(i), graphs without a vertex-minor isomorphic to Pn have bounded rank-
depth. Since graphs of bounded rank-depth have bounded linear rank-width, we deduce the
following result from Theorem 11.10. This improves the previous result by Kim, Kwon, Oum,
and Sivaraman [KKOS20], who showed that a class of graphs with no vertex-minor isomorphic
to Pn is polynomially χ-bounded.

Corollary 11.11. Let n be a positive integer. Every class of graphs with no vertex-minors
isomorphic to Pn is linearly χ-bounded.

If the class of graphs with no vertex-minors isomorphic to a graph H is linearly χ-bounded,
then H is a circle graph by Theorem 11.5. It will be interesting to determine graphs H such
that the class of graphs with no vertex-minor isomorphic to H is linearly χ-bounded. Nešetřil
et al. [NOdMRS21, Theorem 3.7] showed that there is a class of graphs of bounded rank-width
which is not linearly χ-bounded.

11.4 Erdős-Hajnal property

A class G of graphs closed under taking induced subgraphs has the Erdős-Hajnal property if
there exists ε ą 0 such that every graph G in G has an independent set or a clique of size at least
|V pGq|ε, where a clique in a graph is a set of pairwise adjacent vertices, and an independent
set in a graph is a set of pairwise non-adjacent vertices. Erdős and Hajnal [EH89] conjectured
that for every graph H, the class of graphs with no induced subgraph isomorphic to H has the
Erdős-Hajnal property. Chudnovsky and Oum [CO18] proved the affirmative result for a class
of graphs forbidding any graph as a vertex-minor.
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Theorem 11.12 (Chudnovsky and Oum [CO18]). For every graph H, the class of graphs with
no vertex-minor isomorphic to H has the Erdős-Hajnal property.

They indeed proved the following stronger theorem. In a graph, two disjoint sets A and B
of vertices is complete if every vertex in A is adjacent to all vertices in B, and anticomplete if
there is no edge between A and B.

Theorem 11.13 (Chudnovsky and Oum [CO18]). For every graph H, there exists ε ą 0 such
that for each integer n ě 2, every n-vertex graph with no vertex-minor isomorphic to H has
a pair of disjoint vertex sets A and B such that |A|, |B| ě εn and A is either complete or
anticomplete to B.

We remark that Conjecture 11.2 implies Theorem 11.12. Davies [Dav23a] proved the fol-
lowing strengthening of Theorem 11.13.

Theorem 11.14 (Davies [Dav23a]). For every graph H, there exists ε ą 0 such that for each
integer n ě 2, every n-vertex graph with no pivot-minor isomorphic to H has a pair of disjoint
vertex sets A and B such that |A|, |B| ě εn and A is either complete or anticomplete to B.

12 Testing vertex-minors

The notion of vertex-minors is not only interesting in graph theory but also in quantum informa-
tion theory, because of its connection to graph states. A graph state is represented by a graph
whose vertices represent qubits of the graph state. Dahlberg, Helsen, and Wehner [DHW20b]
described this connection as follows:

Graph states are ubiquitous in quantum information with diverse applications rang-
ing from quantum network protocols to measurement based quantum computing.
Here we consider the question whether one graph (source) state can be transformed
into another graph (target) state, using a specific set of quantum operations (LC
+ LPM + CC): single-qubit Clifford operations (LC), single-qubit Pauli measure-
ments (LPM) and classical communication (CC) between sites holding the individual
qubits. . . . Our results make use of the insight that deciding whether a graph state
|Gy can be transformed to another graph state |G1y is equivalent to a known decision
problem in graph theory, namely the problem of deciding whether a graph G1 is a
vertex-minor of a graph G.

Bouchet [Bou91a] presented a polynomial-time algorithm deciding whether two graphs are
locally equivalent, by observing that this problem is equivalent to finding a solution of a system
of equations over the binary field.

Theorem 12.1 (Bouchet [Bou91a]). There is an Opn4q-time algorithm to decide whether two
n-vertex graphs on the same vertex set are locally equivalent.

Dahlberg, Helsen, and Wehner [DHW20a] proved that counting locally equivalent graphs is
#P-complete by reducing this problem on circle graphs to the problem of counting Eulerian
circuits in a 4-regular graph.

Theorem 12.2 (Dahlberg, Helsen, and Wehner [DHW20a, Theorem V.1]). Computing the
number of graphs locally equivalent to an input graph is #P-complete, even if the input graph
is a circle graph.

Unlike the problem of deciding the local equivalence of two graphs, it is NP-complete to
decide whether one graph is a vertex-minor of another graph or isomorphic to a vertex-minor
of another graph.

20



Theorem 12.3 (Dahlberg, Helsen, and Wehner [DHW20b, Theorem 3.1]). Deciding whether
H is a vertex-minor of G for two input graphs G and H with V pHq Ď V pGq is NP-complete,
even if H is a complete graph and G is a circle graph.

Theorem 12.4 (Dahlberg, Helsen, and Wehner [DHW22]). Deciding whether H is isomorphic
to a vertex-minor of G for two input graphs G and H is NP-complete, even if both G and H
are circle graphs.

It is also NP-complete for pivot-minors.

Theorem 12.5 (Dabrowski, Dross, Jeong, Kanté, Kwon, Oum, and Paulusma [DDJ`18]).
Deciding whether H is isomorphic to a pivot-minor of G for two input graphs G and H is
NP-complete, even if H is a star graph and G is bipartite.

Courcelle and Oum [CO07] constructed a modulo-2 counting monadic second-order trans-
duction that maps a graph into the set of all vertex-minors and this allows them to prove the
following theorem.

Theorem 12.6 (Courcelle and Oum [CO07]). Let H be a fixed graph and t be a constant. There
is an Opn3q-time algorithm to certify that an input n-vertex graph has rank-width larger than t
or decide whether it contains a vertex-minor isomorphic to H.

By Theorems 2.2 and 12.6, we deduce the following.

Theorem 12.7. For each fixed circle graph H, there is an Opn3q-time algorithm to decide
whether an input n-vertex graph G contains a vertex-minor isomorphic to H.

It is not known whether we can remove isomorphisms in the previous theorem. Dahlberg,
Helsen, and Wehner [DHW20b] considered this problem when the input graph is a circle graph
and H is a complete graph. By using the method of Courcelle and Oum [CO07], it is straight-
forward to deduce the following algorithm to decide whether an input graph of small rank-width
contains a fixed vertex-minor on a particular vertex set.

Theorem 12.8 (Courcelle and Oum [CO07]). Let H be a fixed graph and t be a constant. There
is an Opn3q-time algorithm to certify that an input n-vertex graph G with V pHq Ď V pGq has
rank-width larger than t or decide whether it contains H as a vertex-minor.

13 Interlace polynomials

We will review the interlace polynomials and the global interlace polynomials. We remark
that Bouchet [Bou91b] defined the restricted Tutte-Martin polynomial and the global Tutte-
Martin polynomial of an isotropic system S, which are identical to the interlace polynomial
and the global interlace polynomial of a fundamental graph of S, respectively, as observed
in [Bou05]. A motivation of Bouchet was to unify Tutte polynomials of binary matroids with
Martin polynomials introduced by Martin [Mar77] for 4-regular graphs and 2-in 2-out digraphs.
For more details, there is a well-written survey by Brijder and Jan Hoogeboom [BJH22].

Arratia, Bollobás, and Sorkin [ABS04] defined (single-variable) interlace polynomials of
graphs recursively but later Aigner and van der Holst [AvdH04] presented the following equiva-
lent definition. Let A be the adjacency matrix of a graph G over the binary field. For a subset
S of V pGq, we write ArSs to denote the S ˆ S principal submatrix of A. The (single-variable)
interlace polynomial of G is defined as

qpG, xq “
ÿ

SĎV pGq

px ´ 1q|S|´rankpArSsq.
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Theorem 13.1 (Arratia, Bollobás, and Sorkin [ABS04, Theorem 12], Aigner and van der
Holst [AvdH04, Corollary 1]). The interlace polynomial is the unique map q satisfying the fol-
lowing two conditions.

(i) If a graph G has an edge uv, then

qpG, xq “ qpG ´ u, xq ` qpG ^ uv ´ u, xq.

(ii) If a graph G has n vertices and no edges, then qpG, xq “ xn.

Aigner and van der Holst [AvdH04] observed the following corollary of Theorem 13.1.

Corollary 13.2. If G and G1 are pivot-equivalent, then qpG, xq “ qpG1, xq.

A theorem of Martin [Mar77] implies that the interlace polynomial of a fundamental graph
of a planar graph H is a restriction of the Tutte polynomial of H. The following generalization
shows that the interlace polynomial of a bipartite graph is identical to a restriction of the Tutte
polynomial of a corresponding binary matroid.

Theorem 13.3 (Aigner and van der Holst [AvdH04, Theorem 3], Bouchet [Bou91b]). Let M
be a binary matroid and G be its fundamental graph. Then qpG, xq “ TM px, xq, where TM px, yq

is the Tutte polynomial of M .

Aigner and van der Holst [AvdH04] defined another polynomial QpG, xq satisfying a 3-term
recurrence relation. Let A be the adjacency matrix of a graph G over the binary field and for
a set X of vertices, let IX be the V pGq ˆ V pGq diagonal matrix over the binary field such that
the pv, vq-entry is 1 if and only if v P X. We define the global interlace polynomial as

QpG, xq “
ÿ

TĎSĎV pGq

px ´ 2q|S|´rankppA`IT qrSsq.

Theorem 13.4 (Aigner and van der Holst [AvdH04, Section 4]). The global interlace polynomial
is the unique map Q satisfying the following two conditions.

(i) If a graph G has an edge uv, then

QpG, xq “ QpG ´ u, xq ` QpG ˚ u ´ u, xq ` QpG ^ uv ´ u, xq.

(ii) If a graph G has n vertices and no edges, then QpG, xq “ xn.

This theorem implies that two locally equivalent graphs deduce the same global interlace
polynomial.

Corollary 13.5 (Aigner and van der Holst [AvdH04, Corollary 4]). If G and G1 are locally
equivalent, then QpG, xq “ QpG1, xq.

14 Isotropic systems

Isotropic systems, defined by Bouchet [Bou87b], are maximally isotropic subspace of even-
dimensional vector space over the binary field equipped with a non-degenerate symmetric bilin-
ear form. An isotropic system is particularly useful for graphs with the vertex-minor relation
since it corresponds to a local equivalence class of graphs [Bou88a], and its connectivity function
is equal to the cut-rank function of its fundamental graphs [Bou89]. Isotropic systems have been
used as a key tool in [CO07,Oum08a,KO23].
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Let K be a 2-dimensional vector space over the binary field, and we denote by α, β, γ the
non-zero elements of K. Let x

`

a
b

˘

,
`

c
d

˘

yK :“ ad ` bc with elements a, b, c, d in the binary field.
For a finite set V , a subspace L of a vector space KV is isotropic if for every x,y P L, xx,yy “ 0
where xx,yy :“

ř

iPV xxi,yiyK . Note that x¨, ¨y is a nondegenerate bilinear form, and so the
dimension of every maximal isotropic space is at most 1

2 dimKV “ |V |. An isotropic system
is a pair S “ pV,Lq of a finite set V and an isotropic subspace L of KV with dimL “ |V |. A
vector a P Kn is an Eulerian vector of an isotropic system W if arXs R L for every nonempty
subset X of V , where arXs is a vector in KV such that arXspvq “ apvq if v P X and arXspvq “ 0
otherwise.

Two vectors a and b are supplementary if apvq and bpvq are nonzero and distinct for every
v P V .

Theorem 14.1 (Bouchet [Bou88a, (3.1)]). Let G be a graph on the vertex set V and let a and
b be supplementary vectors in KV . Let L be the vector space spanned by arNGpvqs`brtvus with
v P V . Then S “ pV,Lq is an isotropic system.

In the previous theorem, we call a triple pG,a,bq a graphic presentation of the resulting
isotropic system, and call G a fundamental graph. Conversely, each isotropic system induces a
graph as follows.

Theorem 14.2 (Bouchet [Bou88a, (4.6)]). Every isotropic system admits a graphic presenta-
tion.

Theorem 14.3 (Bouchet [Bou88a, (7.1) and (7.6))] and Oum [Oum04, Proposition 10.1]). Let
pG1,a1,b1q and pG2,a2,b2q be graphic presentations of the same isotropic system. Then they
are locally equivalent. Furthermore, if ta1pvq,b1pvqu “ ta2pvq,b2pvqu for every v P V pG1q, then
G1 and G2 are pivot-equivalent.

An isotropic system might have distinct graphic presentations inducing the same fundamen-
tal graph. However, Bouchet [Bou91a, (2.5)] showed that regardless of a fundamental graph G
of an isotropic system S, the number of graphic presentations pH,a,bq of S such that H “ G
is the same.

Theorem 14.4 (Bouchet [Bou88a, (7.6) and (8.3)]). Let S “ pV,Lq be an isotropic system
and pG,a,bq be its graphic presentation. For a vertex u and an edge vw of G, both pG ˚ u,a `

brtuus,b`arNGpuqsq and pG^vw,arV ´tv, wus`rtv, wus,brV ´tv, wus`artv, wusq are graphic
presentations of S.

Minors of an isotropic system are defined well by the next theorem. For L Ď KV , x P K´t0u,
and v P V , let L|vx :“ tppxq : xxpvq, xyK “ 0u where p : KV Ñ KV ´tvu be the canonical
projection.

Theorem 14.5 (Bouchet [Bou87b, (8.1)] and [Bou88a, (9.1)]). Let S “ pV,Lq be an isotropic
system with the graphic presentation pG,a,bq. For each x P K and v P V , S|vx :“ pV ´ tvu, L|vxq

is an isotropic system and one of the following is its graphic presentation.

(i) pG ´ v, ppaq, ppbqq if x “ apvq or v is an isolated vertex in G,

(ii) pG ^ vw ´ v, ppa ` brtwusq, ppbartwusqq if x “ bpvq and w is a neighbor of v in G, and

(iii) pG ˚ v ´ v, ppaq, ppb ` arNGpvqsqq otherwise.

Theorem 3.1 is an immediate corollary of Theorem 14.5.
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15 Conclusions

We conclude this paper by presenting several conjectures motivated by the Graph Minors Project
of Robertson and Seymour. The following conjecture is one of the central open problems on
vertex-minors.

Conjecture 9.7. Graphs are well-quasi-ordered by the vertex-minor relation.

If true, then for every class C of graphs closed under taking vertex-minor, there is a finite
list of graphs G1, . . . , Gk such that a graph H is in C if and only if H has no vertex-minor
isomorphic to any Gi.

Here is a conjecture analogous to the algorithm of Robertson and Seymour [RS95] on testing
minors.

Conjecture 15.1. For every fixed graph H, there is a polynomial-time algorithm algorithm to
decide whether an input graph G contains a vertex-minor isomorphic to H.

If Conjectures 9.7 and 15.1 hold, then for every class C of graphs closed under taking vertex-
minors, there is a polynomial-time algorithm to decide whether an input graph is in C.

For the application to graph states in the quantum information theory, it is interesting to
find a vertex-minor on a fixed set of vertices.

Conjecture 15.2. For every fixed graph H, there is a polynomial-time algorithm algorithm to
decide whether an input graph G with V pHq Ď V pGq contains H as a vertex-minor.

Motivated by the graph structure theorem [RS03] and the Matroid Minors Project [GGW05],
Geelen proposed a structural conjecture for vertex-minors. For an integer k ě 1, we say a
graph G is k-rank-connected if |V pGq| ě 2k and ρGpXq ě minp|X|, |V pGq ´ X|, kq for each
X Ď V pGq. A graph G is a rank-k perturbation of a graph H if the adjacency matrix of G can
be obtained from the adjacency matrix of H by adding a diagonal matrix and a matrix of rank
at most k over the binary field.

Conjecture 15.3 (Weak structural conjecture; see [McC21]). For every fixed graph H, there
are positive integers k and p such that every k-rank-connected graph with no vertex-minor iso-
morphic to H is a rank-p perturbation of a circle graph.

Geelen proposed a stronger version of this conjecture, see [McC21, page 23].
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combinatorics. Vol. 1, 2, Elsevier Science B.V., Amsterdam; MIT Press, Cam-
bridge, MA, 1995. MR 1373655

27



[GGW05] James F. Geelen, Bert Gerards, and Geoff Whittle, On Rota’s conjecture and
excluded minors containing large projective geometries, J. Combin. Theory Ser.
B (2005). MR 1957478 (2003k:05033)

[GGW07] Jim Geelen, Bert Gerards, and Geoff Whittle, Excluding a planar graph from
GFpqq-representable matroids, J. Combin. Theory Ser. B 97 (2007), no. 6, 971–
998. MR 2354713

[GGW14] , Solving Rota’s conjecture, Notices Amer. Math. Soc. 61 (2014), no. 7,
736–743.
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