Baker-Bowler theory for Lagrangian Grassmannians

Donggyu Kim

Dept. of Mathematical Sciences, KAIST

Discrete Mathematics Group, IBS

KMS

April 19, 2024

Matroid := Matrix + -oid

(On the Abstract Properties of Linear Dependence by Whitney '35)

Circuit elimination axiom:

 $\forall C_1, C_2 \in \mathcal{C}^{\perp} \ \forall e \in C_1 \cap C_2 \ \exists C_3 \in \mathcal{C}^{\perp} \ \text{s.t.} \ C_3 \subseteq (C_1 \cup C_3) - e$

(Strong) basis exchange axiom: $\forall B_1, B_2 \in \mathcal{B} \ \forall e \in B_1 \setminus B_2 \ \exists f \in B_2 \setminus B_1 \text{ s.t. } B_1 - e + f, B_2 + e - f \in \mathcal{B}$ $\operatorname{Gr}(r, n) \text{ is cut out by the Grassmann-Plücker relations: } \forall S \in \binom{[n]}{r+1} \ \forall T \in \binom{[n]}{r-1}$

$$\sum_{e \in S \setminus T} (-1)^{|S < e| + |T < e|} x_{S-e} x_{T+e} = 0$$

 $2n := \{1 < \cdots < n < 1^* < \cdots < n^*\}$ & we call $\{i, i^*\}$ a skew pair.

 $2\mathbf{n} := \{1 < \cdots < n < 1^* < \cdots < n^*\}$ & we call $\{i, i^*\}$ a skew pair. \mathcal{K}^{2n} equipped with the *symplectic* bilinear form $\omega(X, Y) := \sum_{i=1}^n X_i Y_{i^*} - X_{i^*} Y_i$

2n := {1 < · · · < n < 1^{*} < · · · < n^{*}} & we call {*i*, *i*^{*}} a skew pair. K^{2n} equipped with the *symplectic* bilinear form $\omega(X, Y) := \sum_{i=1}^{n} X_i Y_{i^*} - X_{i^*} Y_i$ *Lagrangian Gr.* SpGr(*n*, 2*n*) := the set of maximal isotropic subsp *W*, i.e., $W = W^{\perp}$

2n := {1 < · · · < n < 1^{*} < · · · < n^{*}} & we call {*i*, *i*^{*}} a skew pair. K^{2n} equipped with the *symplectic* bilinear form $\omega(X, Y) := \sum_{i=1}^{n} X_i Y_{i^*} - X_{i^*} Y_i$ *Lagrangian Gr.* SpGr(*n*, 2*n*) := the set of maximal isotropic subsp *W*, i.e., $W = W^{\perp}$

The coordinates are indexed by transversals $\mathcal{T}_n := \{T \in \binom{2n}{n} : \nexists\{i, i^*\} \subseteq T\}$ and almost-transversals $\mathcal{A}_n := \{A \in \binom{2n}{n} : \exists ! \{i, i^*\} \subseteq A\}$ $x \in \mathbb{P}$ & subtransversal S of size $n - 2 \Longrightarrow x_{S \cup \{i, i^*\}} = (-1)^{i+j} x_{S \cup \{j, j^*\}}$

Theorem (Boege, D'Ali, Khale, Sturmfels 2019 & K. 2024)

 Φ is a parameterization of $\operatorname{SpGr}(n, 2n)$ and the image is cut out by the restricted Grassmann-Plücker relations:

$$\sum_{e \in S \setminus T} (-1)^{|S < e| + |T < e|} x_{S-e} x_{T+e} = 0$$

for all $S \in \binom{2n}{n}$ and $T \in \binom{2n}{n}$ such that S contains exactly one skew pair $\{i, i^*\}$ and T contains no skew pair.

Note:

For W = row-sp of *n*-by-**2n** matrix $A = [A_1|A_2]$, $W = W^{\perp} \iff A_1 A_2^t$ is symmetric.

If
$$A = n \underbrace{I_n \sum_{B = [n] - X + Y^*}}_{B = [n] - X + Y^*}$$
 then $\det(A[B]) = \pm \det(\Sigma[X, Y]).$

Thus det(A[B]) with $B \in \mathcal{T}_n \cup \mathcal{A}_n$ are the principal and almost-principal minors of Σ .

Antisymmetric matroids

Theorem (Boege, D'Alì, Khale, Sturmfels 2019 & K. 2024)

 Φ is a parameterization of $\operatorname{SpGr}(n, 2n)$ and the image is cut out by the restricted Grassmann-Plücker relations:

$$\sum_{e \in S \setminus T} (-1)^{|S < e| + |T < e|} x_{S-e} x_{T+e} = 0$$

for all $S \in \binom{2n}{n}$ and $T \in \binom{2n}{n}$ such that S contains exactly one sp and T contains no sp.

Definition (K. 2024)

An antisymmetric matroid is a pair M = (2n, B) such that $\emptyset \neq B \subseteq T_n \cup A_n$ and satisfies:

- (sym) \forall subtransversal $S \in \binom{2n}{n}$ & distinct skew pairs $\{i, i^*\}, \{j, j^*\}$ non-intersect with S, $S \cup \{i, i^*\} \in \mathcal{B} \iff S \cup \{j, j^*\} \in \mathcal{B}$.
- $_{(Exch)} \ \forall S \in \binom{2n}{n+1} \ \forall T \in \binom{2n}{n-1} \ \text{satisfying } S \ \text{contains exactly one sp and } T \ \text{contains no sp} \\ there \ \text{are NO or} \geq 2 \ \text{elements } e \in S \setminus T \ \text{s.t. both } S e \ \text{and } T e \ \text{are in } \mathcal{B}.$

We call each element in \mathcal{B} a basis.

Ex. The supports of $\Phi(W)$ is the set of bases of an antisymmetric matroid.

Antisymmetric matroids

Theorem (Boege, D'Alì, Khale, Sturmfels 2019 & K. 2024)

 Φ is a parameterization of $\operatorname{SpGr}(n, 2n)$ and the image is cut out by the restricted Grassmann-Plücker relations:

$$\sum_{e \in S \setminus T} (-1)^{|S < e| + |T < e|} x_{S-e} x_{T+e} = 0$$

for all $S \in \binom{2n}{n}$ and $T \in \binom{2n}{n}$ such that S contains exactly one sp and T contains no sp.

Definition (K. 2024)

An antisymmetric matroid is a pair M = (2n, B) such that $\emptyset \neq B \subseteq T_n \cup A_n$ and satisfies:

- (sym) \forall subtransversal $S \in \binom{2n}{n}$ & distinct skew pairs $\{i, i^*\}, \{j, j^*\}$ non-intersect with S, $S \cup \{i, i^*\} \in \mathcal{B} \iff S \cup \{j, j^*\} \in \mathcal{B}$.
- $_{(Exch)} \ \forall S \in \binom{2n}{n+1} \ \forall T \in \binom{2n}{n-1} \ \text{satisfying } S \ \text{contains exactly one sp and } T \ \text{contains no sp} \\ there \ \text{are NO or} \geq 2 \ \text{elements } e \in S \setminus T \ \text{s.t. both } S e \ \text{and } T e \ \text{are in } \mathcal{B}.$

We call each element in ${\mathcal B}$ a basis.

Ex. The supports of $\Phi(W)$ is the set of bases of an antisymmetric matroid.

 $_{(Exch')} \ \forall B, B' \in \mathcal{B} \ \forall e \in B \setminus B' \ \text{if} \ B - e \ \text{contains no sp and} \ B' + e \ \text{contains exactly one sp,} \\ then \ \exists f \in B' \setminus B \ \text{s.t.} \ B - e + f, \ B' + e - f \in \mathcal{B}.$

Circuits = subsets C of 2n s.t. C contains ≤ 1 sp and C is not a subset of any basis.

Circuits = subsets C of **2n** s.t. C contains ≤ 1 sp and C is not a subset of any basis.

Theorem (K. 2024)

Let C be a set of subsets C of $2n = \{1, ..., n, 1^*, ..., n^*\}$ s.t. C contains ≤ 1 skew pair. Then C is the set of circuits of an antisymmetric matroid if and only if the following hold: (C1) $\emptyset \notin C$ (C2) $C_1, C_2 \in C \& C_1 \subseteq C_2 \Longrightarrow C_1 = C_2$ (orth) $|C_1 \cap C_2^*| \neq 1 \quad \forall C_1, C_2 \in C$

 $_{^{(Max)}} T \in \mathcal{T}_n \ \& \ e \in E \setminus T \Longrightarrow \exists C \in \mathcal{C} \ s.t. \ C \subseteq T + e$

Circuits = subsets C of **2n** s.t. C contains ≤ 1 sp and C is not a subset of any basis.

Theorem (K. 2024)

Let C be a set of subsets C of $2n = \{1, ..., n, 1^*, ..., n^*\}$ s.t. C contains ≤ 1 skew pair. Then C is the set of circuits of an antisymmetric matroid if and only if the following hold: (C1) $\emptyset \notin C$ (C2) $C_1, C_2 \in C \& C_1 \subseteq C_2 \Longrightarrow C_1 = C_2$

- (Orth) $|C_1 \cap C_2^*| \neq 1 \quad \forall C_1, C_2 \in \mathcal{C}$
- $_{(Max)} T \in \mathcal{T}_n \& e \in E \setminus T \Longrightarrow \exists C \in \mathcal{C} \text{ s.t. } C \subseteq T + e$

Ex. The set of minimal supports of nonzero vectors $X \in W$ s.t. $\mathrm{supp}(X)$ contains ≤ 1 sp

$\begin{array}{l} {}^{(\operatorname{Add})} \ \forall C_1, \, C_2 \in \mathcal{C} \ \forall e \in C_1 \cap C_2 \\ {}^{\operatorname{if}} \left(C_1 \cup C_2 \right) - e \ \text{contains} \leq 1 \ \text{skew pair, then} \ \exists C_3 \in \mathcal{C} \ \text{s.t.} \ C_3 \subseteq \left(C_1 \cup C_2 \right) - e. \end{array}$

Theorem (Minty 1966)

Let C and D be set of subsets of [n]. Then C and D are the sets of circuits and cocircuits of a matroid, respectively, if and only if the following hold:

```
(i) C and D satisfy (C1) and (C2)

(ii) |C \cap D| \neq 1 \forall C \in C \& \forall D \in D

(iii) \foralltripartition (P, Q, {e}) of [n]

either \exists C \in C \text{ s.t. } e \in C \subseteq P + e \text{ or } \exists D \in D \text{ s.t. } e \in D \subseteq Q + e
```

Theorem (Minty 1966)

Let C and D be set of subsets of [n]. Then C and D are the sets of circuits and cocircuits of a matroid, respectively, if and only if the following hold:

(i) C and D satisfy (C1) and (C2) (ii) $|C \cap D| \neq 1$ $\forall C \in C \& \forall D \in D$ (iii) \forall tripartition (P, Q, {e}) of [n] either $\exists C \in C \text{ s.t. } e \in C \subseteq P + e \text{ or } \exists D \in D \text{ s.t. } e \in D \subseteq Q + e$

 $V \in \operatorname{Gr}(r, n) \mapsto V \oplus V^{\perp} \in \operatorname{SpGr}(n, 2n)$

If C and D are the sets of circuits and cocircuits of a matroid on [n], then $C \oplus D := C \cup \{D^* : D \in D\}$ is the set of circuits of an antisymmetric matroid on **2n**.

 ${Matroids} \subseteq {Antisymmetric matroids}$

Proposition (K. 2024)

A matroid is representable over K in the usal sense if and only if it is representable over K as an antisymmetric matroid.

Theorem (Tutte 1958)

Let $p \in \mathbb{P}^{\binom{n}{r}-1}(K)$. TFAE:

(i) p satisfies all Grassmann-Plücker relations.

(ii) p satisfies all 3-term G–P relations and the support of p forms a matroid.

Theorem (K. 2024)

Let $x \in \mathbb{P}^{2^{n} + {n \choose 2}2^{n-2} - 1}(K)$. TFAE:

(i) \times satisfies all restricted G–P relations.

(ii) x is all \leq 4-term restricted G–P relations and the support of x forms the bases of an antisymmetric matroid.

Symmetric matroids vs. Antisymmetric matroids

Definition

A symmetric matroid is a pair
$$M = (\mathbf{2n}, \mathcal{B})$$
 such that $\emptyset \neq \mathcal{B} \subseteq \mathcal{T}_n$ and

$$\exists \{j, j^*\} \subseteq B \triangle B' \text{ (possibly} = \{i, i^*\}\text{ s.t. } B_1 \triangle \{i, i^*, j, j^*\} \in \mathcal{B}.$$

Basis = each element of \mathcal{B} Circuits = subtransversals not contained in any basis

Ex.

$$A = n \underbrace{I_n \qquad \Sigma}_{B \in T_n} \& \Sigma \text{ is symmetric } \Longrightarrow B = \{B \in T_n : \det(A[B]) \neq 0\}$$

Symmetric matroids vs. Antisymmetric matroids

Definition

A symmetric matroid is a pair
$$M = (\mathbf{2n}, \mathcal{B})$$
 such that $\emptyset \neq \mathcal{B} \subseteq \mathcal{T}_n$ and

$$\exists \{j, j^*\} \subseteq B \triangle B' \text{ (possibly} = \{i, i^*\}\text{) s.t. } B_1 \triangle \{i, i^*, j, j^*\} \in \mathcal{B}.$$

Basis = each element of \mathcal{B} Circuits = subtransversals not contained in any basis

Ex.

$$A = n \underbrace{I_n \prod \Sigma}_{B \in T_n} \& \Sigma \text{ is symmetric } \Longrightarrow B = \{B \in T_n : \det(A[B]) \neq 0\}$$

Proposition (K. 2024)

If M = (2n, B) is an antisymmetric matroid, then $(2n, B \cap T_n)$ is a symmetric matroid.

The converse is open.

Note: Two distinct antisymmetric matroid may induce the same symmetric matroid.

Donggyu Kim (KAIST & IBS)

Even symmetric matroids

A symmetric matroid on **2n** is *even* if $|B \cap [n]|$ have the same parity for all bases *B*.

Proposition (K. 2024)

If M = (2n, B) is an even symmetric matroid, then $\exists ! B' \subseteq A_n$ s.t. $(2n, B \cup B')$ is an antisymmetric matroid.

$$\{\mathsf{Matroids}\} \subseteq \{\mathsf{Even Sym Mat}\} \begin{cases} \mathsf{Symmetric Mat} \\ & \downarrow \\ & \mathsf{Smetric Mat} \\ & \mathsf{Antisym Mat} \end{cases}$$

Even symmetric matroids

A symmetric matroid on **2n** is *even* if $|B \cap [n]|$ have the same parity for all bases *B*.

Proposition (K. 2024)

If M = (2n, B) is an even symmetric matroid, then $\exists ! B' \subseteq A_n$ s.t. $(2n, B \cup B')$ is an antisymmetric matroid.

$$\{\mathsf{Matroids}\} \subseteq \{\mathsf{Even Sym Mat}\} \begin{cases} \mathsf{Symmetric Mat} \\ & \downarrow \\ & \varsigma \\ & \{\mathsf{Antisym Mat}\} \end{cases}$$

 $\label{eq:symmetric} \begin{array}{l} \mbox{Symmetric matroids} \ (\mbox{Late 1980s}) \equiv \mbox{Delta-matroids}, \ 2\mbox{-matroids}, \ \mbox{Metroids}, \\ \mbox{Pseudomatroids}, \ \mbox{Lagrangian} \ (\mbox{symplectic}) \ \mbox{matroids}, \ \mbox{Coxeter matroids} \ \mbox{of type C}] \end{array}$

* The 'strong' basis exchange property does not hold and fundamental circuits may not exist for symmetric matroids.

Even symmetric matroids

A symmetric matroid on **2n** is *even* if $|B \cap [n]|$ have the same parity for all bases *B*.

Proposition (K. 2024)

If M = (2n, B) is an even symmetric matroid, then $\exists ! B' \subseteq A_n$ s.t. $(2n, B \cup B')$ is an antisymmetric matroid.

Symmetric matroids (Late 1980s) \equiv Delta-matroids, 2-matroids, Metroids, Pseudomatroids, Lagrangian (symplectic) matroids [Coxeter matroids of type C]

* The 'strong' basis exchange property does not hold and fundamental circuits may not exist for symmetric matroids.

Even symmetric matroids \equiv Pfaffian structures (Kung 1978), Even delta-matroids, Tight 2-matroids, Lagrangian orthogonal matroids [Coxeter matroids of type D]

* Even symmetric matroids are 'nice' combinatorial structure for understanding Lagrangian *orthogonal* Grassmannian.

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem0. Late 1960's: Oriented matroids

- -1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
- 0. Late 1960's: Oriented matroids
- 1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings DW 1992: Valuated matroids

- -1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
- 0. Late 1960's: Oriented matroids
- 1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings DW 1992: Valuated matroids
- 2. Semple and Whittle 1996: Partial field representations of matroids Pendavingh and van Zwam 2010: Lift theorem and universal partial fields

- -1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
- 0. Late 1960's: Oriented matroids
- 1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings DW 1992: Valuated matroids
- 2. Semple and Whittle 1996: Partial field representations of matroids Pendavingh and van Zwam 2010: Lift theorem and universal partial fields
- 3. Anderson and Delucchi 2012: Complex/Phased matroids

- -1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
- 0. Late 1960's: Oriented matroids
- 1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings DW 1992: Valuated matroids
- 2. Semple and Whittle 1996: Partial field representations of matroids Pendavingh and van Zwam 2010: Lift theorem and universal partial fields
- 3. Anderson and Delucchi 2012: Complex/Phased matroids
- 4. Baker and Bowler 2019: Matroids with coefficients in tracts Baker and Lorscheid 2020~: The moduli space and Foundations of matroids

Antisymmetric matroids with coefficients

A tract is a pair $F = (F^{\times}, N_F)$ of a (multiplicative) abelian group F^{\times} and a subset N_F of group semiring $\mathbb{N}[F^{\times}]$ satisfying certain axioms. Abusing notation: $F = F^{\times} \cup \{0\}$

Antisymmetric matroids with coefficients

A tract is a pair $F = (F^{\times}, N_F)$ of a (multiplicative) abelian group F^{\times} and a subset N_F of group semiring $\mathbb{N}[F^{\times}]$ satisfying certain axioms. Abusing notation: $F = F^{\times} \cup \{0\}$

Definition

A restricted Grassmann-Plücker function on **2n** with coefficients in a tract F is a function $\varphi : \mathcal{T}_n \cup \mathcal{A}_n \to F$ such that $\varphi \not\equiv 0$ and satisfies:

 $_{(Sym)}$ \forall subtransversal $S \in \binom{2n}{n}$ & distinct skew pairs $\{i, i^*\}, \{j, j^*\}$ non-intersect with S

$$\varphi(\boldsymbol{S} \cup \{i, i^*\}) = (-1)^{i+j} \varphi(\boldsymbol{S} \cup \{j, j^*\})$$

 $_{^{(rGP)}} \forall S \in \binom{2n}{n+1} \forall T \in \binom{2n}{n-1} \text{ satisfying } S \text{ contains exactly one sp and } T \text{ contains no sp}$

$$\sum_{e \in S \setminus T} (-1)^{|S < e| + |T < e|} arphi(S - e) arphi(T + e) \in N_F$$

An antisymmetric *F*-matroid is an equivalence class of restricted G–P functions, where $\varphi \sim c\varphi$ for $c \in F^{\times}$.

Donggyu Kim (KAIST & IBS)

Theorem (K. 2024)

${Antisymmetric \ F-matroids} \stackrel{1-1}{\longleftrightarrow} {Antisymmetric \ F-circuit \ sets}$

Antisymmetric matroids with coefficients in tracts F generalize

- (1) matroids with coefficients in tracts (Baker and Bowler 2019) and
- (2) points in the projective space satisfying the restricted Grassmann-Plücker relations (equivalently, Lagrangian subspaces) if F = K is a field.

Theorem (K. 2024)

${Antisymmetric \ F-matroids} \stackrel{1-1}{\longleftrightarrow} {Antisymmetric \ F-circuit \ sets}$

Antisymmetric matroids with coefficients in tracts F generalize

- (1) matroids with coefficients in tracts (Baker and Bowler 2019) and
- (2) points in the projective space satisfying the restricted Grassmann-Plücker relations (equivalently, Lagrangian subspaces) if F = K is a field.

Furthermore, they are compatible with several other concepts such as

- (3) the Lagrangian orthogonal matroids (Coxeter matroids of type D) with coefficients in tracts (Jin and Kim 2023) if -1 = 1 in F,
- (4) the symplectic Dressian and isotropic tropical linear spaces (Rincón 2012 & Balla and Olarte 2023) if $F = \mathbb{T}$ is the tropical hyperfield, and
- (5) oriented gaussoids (Boege et al. 2019) if F = S is the sign hyperfield.

Thank you!