Baker-Bowler theory for Lagrangian Grassmannians

Donggyu Kim

Dept. of Mathematical Sciences, KAIST
Discrete Mathematics Group, IBS

KMS

April 19, 2024

Matroid $:=$ Matrix + -oid

(On the Abstract Properties of Linear Dependence by Whitney '35)

$$
\begin{aligned}
& \operatorname{Gr}(r, n){\underset{n}{ }}_{p}^{\mathbb{P}^{\binom{n}{r}-1}(K)} \\
& \begin{array}{l}
V= \\
\text { row-sp }(A)
\end{array} \quad r \begin{array}{c}
n \\
B
\end{array} \\
& \mathcal{C}^{\perp}=\{\text { min. supp. } X \in V-\mathbf{0}\} \\
& p_{B}(V)=\operatorname{det}(A[B]) \\
& \mathcal{B}=\left\{B \in\binom{[n]}{r}: p_{B}(V) \neq 0\right\}
\end{aligned}
$$

Circuit elimination axiom:
$\forall C_{1}, C_{2} \in \mathcal{C}^{\perp} \forall e \in C_{1} \cap C_{2} \exists C_{3} \in \mathcal{C}^{\perp}$ s.t. $C_{3} \subseteq\left(C_{1} \cup C_{3}\right)-e$
(Strong) basis exchange axiom:
$\forall B_{1}, B_{2} \in \mathcal{B} \forall e \in B_{1} \backslash B_{2} \exists f \in B_{2} \backslash B_{1}$ s.t. $B_{1}-e+f, B_{2}+e-f \in \mathcal{B}$
$\operatorname{Gr}(r, n)$ is cut out by the Grassmann-Plücker relations: $\forall S \in\binom{[n]}{r+1} \forall T \in\binom{[n]}{r-1}$

$$
\sum_{e \in S \backslash T}(-1)^{|S<e|+|T<e|} x_{S-e} X_{T+e}=0
$$

Parameterization of the Lagrangian Grassmannian

$\mathbf{2 n}:=\left\{1<\cdots<n<\mathbf{1}^{*}<\cdots<n^{*}\right\} \&$ we call $\left\{i, i^{*}\right\}$ a skew pair.

Parameterization of the Lagrangian Grassmannian

$2 \mathbf{n}:=\left\{1<\cdots<n<1^{*}<\cdots<n^{*}\right\} \&$ we call $\left\{i, i^{*}\right\}$ a skew pair. $K^{2 n}$ equipped with the symplectic bilinear form $\omega(X, Y):=\sum_{i=1}^{n} X_{i} Y_{i^{*}}-X_{i^{*}} Y_{i}$

Parameterization of the Lagrangian Grassmannian

$2 \mathbf{n}:=\left\{1<\cdots<n<1^{*}<\cdots<n^{*}\right\} \&$ we call $\left\{i, i^{*}\right\}$ a skew pair. $K^{2 n}$ equipped with the symplectic bilinear form $\omega(X, Y):=\sum_{i=1}^{n} X_{i} Y_{i^{*}}-X_{i^{*}} Y_{i}$ Lagrangian $\operatorname{Gr} . \operatorname{SpGr}(n, 2 n):=$ the set of maximal isotropic subsp W, i.e., $W=W^{\perp}$

Parameterization of the Lagrangian Grassmannian

$2 \mathbf{n}:=\left\{1<\cdots<n<1^{*}<\cdots<n^{*}\right\} \&$ we call $\left\{i, i^{*}\right\}$ a skew pair. $K^{2 n}$ equipped with the symplectic bilinear form $\omega(X, Y):=\sum_{i=1}^{n} X_{i} Y_{i^{*}}-X_{i^{*}} Y_{i}$ Lagrangian $\operatorname{Gr} . \operatorname{SpGr}(n, 2 n):=$ the set of maximal isotropic subsp W, i.e., $W=W^{\perp}$

$$
\begin{aligned}
& \operatorname{SpGr}(n, 2 n) \xrightarrow{\Phi} \mathbb{P}^{2^{n}+\binom{n}{2} 2^{n-2}-1}(K) \\
& W= \\
& \text { row-sp }(A) \\
& \Phi_{B}(W)=\operatorname{det}(A[B]) \\
& \mathcal{C}^{*}=\begin{array}{l}
\{\text { min. supp. } X \in V-\mathbf{0} \\
\text { containing } \leq 1 \text { skew pair }\}
\end{array} \\
& \mathcal{B}=\left\{B \in \mathcal{T}_{n} \cup \mathcal{A}_{n}: \Phi_{B}(V) \neq 0\right\}
\end{aligned}
$$

The coordinates are indexed by transversals $\mathcal{T}_{n}:=\left\{T \in\binom{2 \mathbf{n}}{n}: \nexists\left\{i, i^{*}\right\} \subseteq T\right\}$ and almost-transversals $\mathcal{A}_{n}:=\left\{A \in\binom{2 \mathrm{n}}{n}: \exists!\left\{i, i^{*}\right\} \subseteq A\right\}$ $x \in \mathbb{P} \&$ subtransversal S of size $n-2 \Longrightarrow x_{S \cup\left\{i, i^{*}\right\}}=(-1)^{i+j} x_{S \cup\left\{j, j^{*}\right\}}$

Theorem (Boege, D'Ali, Khale, Sturmfels 2019 \& K. 2024)

Φ is a parameterization of $\operatorname{SpGr}(n, 2 n)$ and the image is cut out by the restricted Grassmann-Plücker relations:

$$
\sum_{e \in S \backslash T}(-1)^{|S<e|+|T<e|} X_{S-e} X_{T+e}=0
$$

for all $S \in\binom{2 n}{n}$ and $T \in\binom{2 n}{n}$ such that S contains exactly one skew pair $\left\{i, i^{*}\right\}$ and T contains no skew pair.

Note:
For $W=$ row-sp of n-by- $\mathbf{2 n}$ matrix $A=\left[A_{1} \mid A_{2}\right], \quad W=W^{\perp} \Longleftrightarrow A_{1} A_{2}^{t}$ is symmetric.

$$
\text { If } A=n \underbrace{\substack{1 \ldots n \\ I_{n} \\ \hline \multirow{2}{*}{1^{*} \ldots n^{*}}1 ^ { * } \ldots n ^ { * }}}_{B=[n]-X+Y^{*}} \text { then } \operatorname{det}(A[B])= \pm \operatorname{det}(\Sigma[X, Y])
$$

Thus $\operatorname{det}(A[B])$ with $B \in \mathcal{T}_{n} \cup \mathcal{A}_{n}$ are the principal and almost-principal minors of Σ.

Antisymmetric matroids

Theorem (Boege, D'Ali, Khale, Sturmfels 2019 \& K. 2024)

Φ is a parameterization of $\operatorname{SpGr}(n, 2 n)$ and the image is cut out by the restricted Grassmann-Plücker relations:

$$
\sum_{e \in S \backslash T}(-1)^{|S<e|+|T<e|} x_{S-e} x_{T+e}=0
$$

for all $S \in\binom{2 \mathbf{n}}{n}$ and $T \in\binom{2 n}{n}$ such that S contains exactly one sp and T contains no sp.

Definition (K. 2024)

An antisymmetric matroid is a pair $M=(\mathbf{2 n}, \mathcal{B})$ such that $\emptyset \neq \mathcal{B} \subseteq \mathcal{T}_{n} \cup \mathcal{A}_{n}$ and satisfies:
(sym) \forall subtransversal $S \in\binom{2 n}{n} \&$ distinct skew pairs $\left\{i, i^{*}\right\},\left\{j, j^{*}\right\}$ non-intersect with S, $S \cup\left\{i, i^{*}\right\} \in \mathcal{B} \Longleftrightarrow S \cup\left\{j, j^{*}\right\} \in \mathcal{B}$.
(Exch) $\forall S \in\binom{2 n}{n+1} \forall T \in\binom{2 n}{n-1}$ satisfying S contains exactly one sp and T contains no sp there are NO or ≥ 2 elements $e \in S \backslash T$ s.t. both $S-e$ and $T-e$ are in \mathcal{B}.

We call each element in \mathcal{B} a basis.
Ex. The supports of $\Phi(W)$ is the set of bases of an antisymmetric matroid.

Antisymmetric matroids

Theorem (Boege, D'Ali, Khale, Sturmfels 2019 \& K. 2024)

Φ is a parameterization of $\operatorname{SpGr}(n, 2 n)$ and the image is cut out by the restricted Grassmann-Plücker relations:

$$
\sum_{e \in S \backslash T}(-1)^{|S<e|+|T<e|} x_{S-e} x_{T+e}=0
$$

for all $S \in\binom{2 n}{n}$ and $T \in\binom{2 n}{n}$ such that S contains exactly one sp and T contains no sp.

Definition (K. 2024)

An antisymmetric matroid is a pair $M=(\mathbf{2 n}, \mathcal{B})$ such that $\emptyset \neq \mathcal{B} \subseteq \mathcal{T}_{n} \cup \mathcal{A}_{n}$ and satisfies: (sym) \forall subtransversal $S \in\binom{2 n}{n} \&$ distinct skew pairs $\left\{i, i^{*}\right\},\left\{j, j^{*}\right\}$ non-intersect with S, $S \cup\left\{i, i^{*}\right\} \in \mathcal{B} \Longleftrightarrow S \cup\left\{j, j^{*}\right\} \in \mathcal{B}$.
(Exch) $\forall S \in\binom{2 n}{n+1} \forall T \in\binom{2 n}{n-1}$ satisfying S contains exactly one sp and T contains no sp there are NO or ≥ 2 elements $e \in S \backslash T$ s.t. both $S-e$ and $T-e$ are in \mathcal{B}.

We call each element in \mathcal{B} a basis.
Ex. The supports of $\Phi(W)$ is the set of bases of an antisymmetric matroid.
(Exch) $\forall B, B^{\prime} \in \mathcal{B} \forall e \in B \backslash B^{\prime}$ if $B-e$ contains no sp and $B^{\prime}+e$ contains exactly one sp , then $\exists f \in B^{\prime} \backslash B$ s.t. $B-e+f, B^{\prime}+e-f \in \mathcal{B}$.

Circuits $=$ subsets C of $\mathbf{2 n}$ s.t. C contains ≤ 1 sp and C is not a subset of any basis.

Circuits $=$ subsets C of $2 \mathbf{n}$ s.t. C contains $\leq 1 \mathrm{sp}$ and C is not a subset of any basis.

Theorem (K. 2024)

Let \mathcal{C} be a set of subsets C of $\mathbf{2 n}=\left\{1, \ldots, n, 1^{*}, \ldots, n^{*}\right\}$ s.t. C contains ≤ 1 skew pair. Then \mathcal{C} is the set of circuits of an antisymmetric matroid if and only if the following hold:
(C1) $\emptyset \notin \mathcal{C}$
(C2) $C_{1}, C_{2} \in \mathcal{C} \& C_{1} \subseteq C_{2} \Longrightarrow C_{1}=C_{2}$
(Orth) $\left|C_{1} \cap C_{2}^{*}\right| \neq 1 \quad \forall C_{1}, C_{2} \in \mathcal{C}$
(Max) $T \in \mathcal{T}_{n} \& e \in E \backslash T \Longrightarrow \exists C \in \mathcal{C}$ s.t. $C \subseteq T+e$

Circuits $=$ subsets C of $2 \mathbf{n}$ s.t. C contains $\leq 1 \mathrm{sp}$ and C is not a subset of any basis.

Theorem (K. 2024)

Let \mathcal{C} be a set of subsets C of $\mathbf{2 n}=\left\{1, \ldots, n, 1^{*}, \ldots, n^{*}\right\}$ s.t. C contains ≤ 1 skew pair. Then \mathcal{C} is the set of circuits of an antisymmetric matroid if and only if the following hold:
(C1) $\emptyset \notin \mathcal{C}$
(C2) $C_{1}, C_{2} \in \mathcal{C} \& C_{1} \subseteq C_{2} \Longrightarrow C_{1}=C_{2}$
(Orth) $\left|C_{1} \cap C_{2}^{*}\right| \neq 1 \quad \forall C_{1}, C_{2} \in \mathcal{C}$
${ }_{(\text {Max })} T \in \mathcal{T}_{n} \& e \in E \backslash T \Longrightarrow \exists C \in \mathcal{C}$ s.t. $C \subseteq T+e$
Ex. The set of minimal supports of nonzero vectors $X \in W$ s.t. $\operatorname{supp}(X)$ contains $\leq 1 \mathrm{sp}$ (Add) $\forall C_{1}, C_{2} \in \mathcal{C} \forall e \in C_{1} \cap C_{2}$ if $\left(C_{1} \cup C_{2}\right)-e$ contains ≤ 1 skew pair, then $\exists C_{3} \in \mathcal{C}$ s.t. $C_{3} \subseteq\left(C_{1} \cup C_{2}\right)-e$.

Theorem (Minty 1966)

Let \mathcal{C} and \mathcal{D} be set of subsets of [n]. Then \mathcal{C} and \mathcal{D} are the sets of circuits and cocircuits of a matroid, respectively, if and only if the following hold:
(i) \mathcal{C} and \mathcal{D} satisfy (C1) and (C2)
(ii) $|C \cap D| \neq 1 \quad \forall C \in \mathcal{C} \& \forall D \in \mathcal{D}$
(iii) \forall tripartition $(P, Q,\{e\})$ of $[n]$
either $\exists C \in \mathcal{C}$ s.t. $e \in C \subseteq P+e$ or $\exists D \in \mathcal{D}$ s.t. $e \in D \subseteq Q+e$

Theorem (Minty 1966)

Let \mathcal{C} and \mathcal{D} be set of subsets of $[n]$. Then \mathcal{C} and \mathcal{D} are the sets of circuits and cocircuits of a matroid, respectively, if and only if the following hold:
(i) \mathcal{C} and \mathcal{D} satisfy (C1) and (C2)
(ii) $|C \cap D| \neq 1 \quad \forall C \in \mathcal{C} \quad \& \forall D \in \mathcal{D}$
(iii) \forall tripartition $(P, Q,\{e\})$ of $[n]$
either $\exists C \in \mathcal{C}$ s.t. $e \in C \subseteq P+e$ or $\exists D \in \mathcal{D}$ s.t. $e \in D \subseteq Q+e$
$V \in \operatorname{Gr}(r, n) \mapsto V \oplus V^{\perp} \in \operatorname{SpGr}(n, 2 n)$
If \mathcal{C} and \mathcal{D} are the sets of circuits and cocircuits of a matroid on [n], then $\mathcal{C} \oplus \mathcal{D}:=\mathcal{C} \cup\left\{D^{*}: D \in \mathcal{D}\right\}$ is the set of circuits of an antisymmetric matroid on $\mathbf{2 n}$.

$$
\{\text { Matroids }\} \subseteq\{\text { Antisymmetric matroids }\}
$$

Proposition (K. 2024)

A matroid is representable over K in the usal sense if and only if it is representable over K as an antisymmetric matroid.

Theorem (Tutte 1958)

Let $p \in \mathbb{P}^{\binom{n}{r}-1}(K)$. TFAE:
(i) p satisfies all Grassmann-Plücker relations.
(ii) p satisfies all 3-term $G-P$ relations and the support of p forms a matroid.

Theorem (K. 2024)

Let $x \in \mathbb{P}^{2^{n}+\binom{n}{2} 2^{n-2}-1}(K)$. TFAE:
(i) x satisfies all restricted $G-P$ relations.
(ii) x is all ≤ 4-term restricted $G-P$ relations and the support of x forms the bases of an antisymmetric matroid.

Symmetric matroids vs. Antisymmetric matroids

Definition

A symmetric matroid is a pair $M=(2 \mathbf{n}, \mathcal{B})$ such that $\emptyset \neq \mathcal{B} \subseteq \mathcal{T}_{n}$ and
(SEA) $\forall B, B^{\prime} \in \mathcal{B} \quad \forall\left\{i, i^{*}\right\} \subseteq B \triangle B^{\prime}$
$\exists\left\{j, j^{*}\right\} \subseteq B \triangle B^{\prime}\left(\right.$ possibly $\left.=\left\{i, i^{*}\right\}\right)$ s.t. $B_{1} \triangle\left\{i, i^{*}, j, j^{*}\right\} \in \mathcal{B}$.
Basis $=$ each element of \mathcal{B}
Circuits = subtransversals not contained in any basis

Ex.

Symmetric matroids vs. Antisymmetric matroids

Definition

A symmetric matroid is a pair $M=(\mathbf{2 n}, \mathcal{B})$ such that $\emptyset \neq \mathcal{B} \subseteq \mathcal{T}_{n}$ and
(SEA) $\forall B, B^{\prime} \in \mathcal{B} \quad \forall\left\{i, i^{*}\right\} \subseteq B \triangle B^{\prime}$

$$
\exists\left\{j, j^{*}\right\} \subseteq B \triangle B^{\prime}\left(\text { possibly }=\left\{i, i^{*}\right\}\right) \text { s.t. } B_{1} \triangle\left\{i, i^{*}, j, j^{*}\right\} \in \mathcal{B} .
$$

Basis $=$ each element of \mathcal{B}
Circuits = subtransversals not contained in any basis

Ex.

Proposition (K. 2024)

If $M=(2 \mathbf{n}, \mathcal{B})$ is an antisymmetric matroid, then $\left(\mathbf{2 n}, \mathcal{B} \cap \mathcal{T}_{n}\right)$ is a symmetric matroid.
The converse is open.
Note: Two distinct antisymmetric matroid may induce the same symmetric matroid.

Even symmetric matroids

A symmetric matroid on $\mathbf{2 n}$ is even if $|B \cap[n]|$ have the same parity for all bases B.

Proposition (K. 2024)

If $M=(2 \mathbf{n}, \mathcal{B})$ is an even symmetric matroid, then $\exists!\mathcal{B}^{\prime} \subseteq \mathcal{A}_{n}$ s.t. $\left(2 \mathbf{n}, \mathcal{B} \cup \mathcal{B}^{\prime}\right)$ is an antisymmetric matroid.

Even symmetric matroids

A symmetric matroid on $\mathbf{2 n}$ is even if $|B \cap[n]|$ have the same parity for all bases B.

Proposition (K. 2024)

If $M=(2 \mathbf{n}, \mathcal{B})$ is an even symmetric matroid, then $\exists!\mathcal{B}^{\prime} \subseteq \mathcal{A}_{n}$ s.t. $\left(2 \mathbf{n}, \mathcal{B} \cup \mathcal{B}^{\prime}\right)$ is an antisymmetric matroid.

Symmetric matroids (Late 1980s) \equiv Delta-matroids, 2-matroids, Metroids, Pseudomatroids, Lagrangian (symplectic) matroids [Coxeter matroids of type C] * The 'strong' basis exchange property does not hold and fundamental circuits may not exist for symmetric matroids.

Even symmetric matroids

A symmetric matroid on $\mathbf{2 n}$ is even if $|B \cap[n]|$ have the same parity for all bases B.

Proposition (K. 2024)

If $M=(2 \mathbf{n}, \mathcal{B})$ is an even symmetric matroid, then $\exists!\mathcal{B}^{\prime} \subseteq \mathcal{A}_{n}$ s.t. $\left(2 \mathbf{n}, \mathcal{B} \cup \mathcal{B}^{\prime}\right)$ is an antisymmetric matroid.

Symmetric matroids (Late 1980s) \equiv Delta-matroids, 2-matroids, Metroids, Pseudomatroids, Lagrangian (symplectic) matroids [Coxeter matroids of type C] * The 'strong' basis exchange property does not hold and fundamental circuits may not exist for symmetric matroids.

Even symmetric matroids \equiv Pfaffian structures (Kung 1978), Even delta-matroids, Tight 2-matroids, Lagrangian orthogonal matroids [Coxeter matroids of type D]

* Even symmetric matroids are 'nice' combinatorial structure for understanding Lagrangian orthogonal Grassmannian.

Matroids with coefficients

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem

Matroids with coefficients

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
0. Late 1960's: Oriented matroids

Matroids with coefficients

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
0. Late 1960's: Oriented matroids

1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings DW 1992: Valuated matroids

Matroids with coefficients

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
0. Late 1960's: Oriented matroids

1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings DW 1992: Valuated matroids
2. Semple and Whittle 1996: Partial field representations of matroids Pendavingh and van Zwam 2010: Lift theorem and universal partial fields

Matroids with coefficients

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
0. Late 1960's: Oriented matroids

1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings DW 1992: Valuated matroids
2. Semple and Whittle 1996: Partial field representations of matroids Pendavingh and van Zwam 2010: Lift theorem and universal partial fields
3. Anderson and Delucchi 2012: Complex/Phased matroids

Matroids with coefficients

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem
0. Late 1960's: Oriented matroids

1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings DW 1992: Valuated matroids
2. Semple and Whittle 1996: Partial field representations of matroids Pendavingh and van Zwam 2010: Lift theorem and universal partial fields
3. Anderson and Delucchi 2012: Complex/Phased matroids
4. Baker and Bowler 2019: Matroids with coefficients in tracts Baker and Lorscheid 2020~: The moduli space and Foundations of matroids

Antisymmetric matroids with coefficients

A tract is a pair $F=\left(F^{\times}, N_{F}\right)$ of a (multiplicative) abelian group F^{\times}and a subset N_{F} of group semiring $\mathbb{N}\left[F^{\times}\right]$satisfying certain axioms. Abusing notation: $F=F^{\times} \cup\{0\}$

Antisymmetric matroids with coefficients

A tract is a pair $F=\left(F^{\times}, N_{F}\right)$ of a (multiplicative) abelian group F^{\times}and a subset N_{F} of group semiring $\mathbb{N}\left[F^{\times}\right]$satisfying certain axioms. Abusing notation: $F=F^{\times} \cup\{0\}$

Definition

A restricted Grassmann-Plücker function on $\mathbf{2 n}$ with coefficients in a tract F is a function $\varphi: \mathcal{T}_{n} \cup \mathcal{A}_{n} \rightarrow F$ such that $\varphi \not \equiv 0$ and satisfies:
(sym) \forall subtransversal $S \in\binom{2 n}{n}$ \& distinct skew pairs $\left\{i, i^{*}\right\},\left\{j, j^{*}\right\}$ non-intersect with S

$$
\varphi\left(S \cup\left\{i, i^{*}\right\}\right)=(-1)^{i+j} \varphi\left(S \cup\left\{j, j^{*}\right\}\right)
$$

(rGP) $\forall S \in\binom{2 \mathrm{n}}{n+1} \forall T \in\binom{2 \mathrm{n}}{n-1}$ satisfying S contains exactly one sp and T contains no sp

$$
\sum_{e \in S \backslash T}(-1)^{|S<e|+|T<e|} \varphi(S-e) \varphi(T+e) \in N_{F}
$$

An antisymmetric F-matroid is an equivalence class of restricted G-P functions, where $\varphi \sim c \varphi$ for $c \in F^{\times}$.

Theorem (K. 2024)

\{Antisymmetric F-matroids\} $\stackrel{1-1}{\longleftrightarrow}$ \{Antisymmetric F-circuit sets $\}$

Antisymmetric matroids with coefficients in tracts F generalize
(1) matroids with coefficients in tracts (Baker and Bowler 2019) and
(2) points in the projective space satisfying the restricted Grassmann-Plücker relations (equivalently, Lagrangian subspaces) if $F=K$ is a field.

Theorem (K. 2024)

$\{$ Antisymmetric F-matroids $\} \stackrel{1-1}{\longleftrightarrow}$ \{Antisymmetric F-circuit sets $\}$

Antisymmetric matroids with coefficients in tracts F generalize
(1) matroids with coefficients in tracts (Baker and Bowler 2019) and
(2) points in the projective space satisfying the restricted Grassmann-Plücker relations (equivalently, Lagrangian subspaces) if $F=K$ is a field.

Furthermore, they are compatible with several other concepts such as
(3) the Lagrangian orthogonal matroids (Coxeter matroids of type D) with coefficients in tracts (Jin and Kim 2023) if $-1=1$ in F,
(4) the symplectic Dressian and isotropic tropical linear spaces (Rincón 2012 \& Balla and Olarte 2023) if $F=\mathbb{T}$ is the tropical hyperfield, and
(5) oriented gaussoids (Boege et al. 2019) if $F=\mathbb{S}$ is the sign hyperfield.

Thank you!

