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Matroid := Matrix + -oid
(On the Abstract Properties of Linear Dependence by Whitney ’35)

Gr(r , n) P(
n
r)−1(K)

p

n

r

B

V =
row-sp(A)

C⊥ = {min. supp. X ∈ V − 0}

pB(V ) = det(A[B])

B = {B ∈
(
[n]
r

)
: pB(V ) ̸= 0}

Circuit elimination axiom:
∀C1,C2 ∈ C⊥ ∀e ∈ C1 ∩ C2 ∃C3 ∈ C⊥ s.t. C3 ⊆ (C1 ∪ C3)− e

(Strong) basis exchange axiom:
∀B1,B2 ∈ B ∀e ∈ B1 \ B2 ∃f ∈ B2 \ B1 s.t. B1 − e + f ,B2 + e − f ∈ B
Gr(r , n) is cut out by the Grassmann-Plücker relations: ∀S ∈

(
[n]
r+1

)
∀T ∈

(
[n]
r−1

)
∑

e∈S\T

(−1)|S<e|+|T<e|xS−exT+e = 0
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Parameterization of the Lagrangian Grassmannian

2n := {1 < · · · < n < 1∗ < · · · < n∗} & we call {i , i∗} a skew pair.

K 2n equipped with the symplectic bilinear form ω(X ,Y ) :=
∑n

i=1 XiYi∗ − Xi∗Yi

Lagrangian Gr. SpGr(n, 2n) := the set of maximal isotropic subsp W , i.e., W = W⊥

SpGr(n, 2n) P2n+(n2)2
n−2−1(K)

Φ

2n

n

B

W =
row-sp(A)

C∗ =
{min. supp. X ∈ V − 0
containing ≤ 1 skew pair}

ΦB(W ) = det(A[B])

B = {B ∈ Tn ∪ An : ΦB(V ) ̸= 0}

The coordinates are indexed by transversals Tn := {T ∈
(
2n
n

)
: ∄{i , i∗} ⊆ T}

and almost-transversals An := {A ∈
(
2n
n

)
: ∃!{i , i∗} ⊆ A}

x ∈ P & subtransversal S of size n − 2 =⇒ xS∪{i,i∗} = (−1)i+jxS∪{j,j∗}
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Theorem (Boege, D’Ali, Khale, Sturmfels 2019 & K. 2024)

Φ is a parameterization of SpGr(n, 2n) and the image is cut out by the restricted
Grassmann-Plücker relations:∑

e∈S\T

(−1)|S<e|+|T<e|xS−exT+e = 0

for all S ∈
(
2n
n

)
and T ∈

(
2n
n

)
such that S contains exactly one skew pair {i , i∗} and T

contains no skew pair.

Note:
For W = row-sp of n-by-2n matrix A = [A1|A2], W = W⊥ ⇐⇒ A1A

t
2 is symmetric.

1 . . . n 1∗ . . . n∗

n In Σ

B = [n] − X + Y∗

If A = then det(A[B]) = ± det(Σ[X ,Y ]).

Thus det(A[B]) with B ∈ Tn ∪ An are the principal and almost-principal minors of Σ.
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Antisymmetric matroids

Theorem (Boege, D’Al̀ı, Khale, Sturmfels 2019 & K. 2024)

Φ is a parameterization of SpGr(n, 2n) and the image is cut out by the restricted
Grassmann-Plücker relations:∑

e∈S\T

(−1)|S<e|+|T<e|xS−exT+e = 0

for all S ∈
(
2n
n

)
and T ∈

(
2n
n

)
such that S contains exactly one sp and T contains no sp.

Definition (K. 2024)

An antisymmetric matroid is a pair M = (2n,B) such that ∅ ≠ B ⊆ Tn ∪An and satisfies:

(Sym) ∀subtransversal S ∈
(
2n
n

)
& distinct skew pairs {i , i∗}, {j , j∗} non-intersect with S ,

S ∪ {i , i∗} ∈ B ⇐⇒ S ∪ {j , j∗} ∈ B.
(Exch) ∀S ∈

(
2n
n+1

)
∀T ∈

(
2n
n−1

)
satisfying S contains exactly one sp and T contains no sp

there are NO or ≥ 2 elements e ∈ S \ T s.t. both S − e and T − e are in B.

We call each element in B a basis.
Ex. The supports of Φ(W ) is the set of bases of an antisymmetric matroid.

(Exch’) ∀B,B ′ ∈ B ∀e ∈ B \ B ′ if B − e contains no sp and B ′ + e contains exactly one sp,
then ∃f ∈ B ′ \ B s.t. B − e + f , B ′ + e − f ∈ B.
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Circuits = subsets C of 2n s.t. C contains ≤ 1 sp and C is not a subset of any basis.

Theorem (K. 2024)

Let C be a set of subsets C of 2n = {1, . . . , n, 1∗, . . . , n∗} s.t. C contains ≤ 1 skew pair.
Then C is the set of circuits of an antisymmetric matroid if and only if the following hold:

(C1) ∅ /∈ C
(C2) C1,C2 ∈ C & C1 ⊆ C2 =⇒ C1 = C2

(Orth) |C1 ∩ C∗
2 | ̸= 1 ∀C1,C2 ∈ C

(Max) T ∈ Tn & e ∈ E \ T =⇒ ∃C ∈ C s.t. C ⊆ T + e

Ex. The set of minimal supports of nonzero vectors X ∈W s.t. supp(X ) contains ≤ 1 sp

(Add) ∀C1,C2 ∈ C ∀e ∈ C1 ∩ C2

if (C1 ∪ C2)− e contains ≤ 1 skew pair, then ∃C3 ∈ C s.t. C3 ⊆ (C1 ∪ C2)− e.
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Theorem (Minty 1966)

Let C and D be set of subsets of [n]. Then C and D are the sets of circuits and cocircuits
of a matroid, respectively, if and only if the following hold:

(i) C and D satisfy (C1) and (C2)

(ii) |C ∩ D| ≠ 1 ∀C ∈ C & ∀D ∈ D
(iii) ∀tripartition (P,Q, {e}) of [n]

either ∃C ∈ C s.t. e ∈ C ⊆ P + e or ∃D ∈ D s.t. e ∈ D ⊆ Q + e

V ∈ Gr(r , n) 7→ V ⊕ V⊥ ∈ SpGr(n, 2n)

If C and D are the sets of circuits and cocircuits of a matroid on [n],
then C ⊕D := C ∪ {D∗ : D ∈ D} is the set of circuits of an antisymmetric matroid on 2n.

{Matroids} ⊆ {Antisymmetric matroids}

Proposition (K. 2024)

A matroid is representable over K in the usal sense if and only if it is representable over
K as an antisymmetric matroid.
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Theorem (Tutte 1958)

Let p ∈ P(
n
r)−1(K). TFAE:

(i) p satisfies all Grassmann-Plücker relations.

(ii) p satisfies all 3-term G–P relations and the support of p forms a matroid.

Theorem (K. 2024)

Let x ∈ P2n+(n2)2
n−2−1(K). TFAE:

(i) x satisfies all restricted G–P relations.

(ii) x is all ≤ 4-term restricted G–P relations and the support of x forms the bases of an
antisymmetric matroid.
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Symmetric matroids vs. Antisymmetric matroids

Definition

A symmetric matroid is a pair M = (2n,B) such that ∅ ̸= B ⊆ Tn and

(SEA) ∀B,B ′ ∈ B ∀{i , i∗} ⊆ B△B ′

∃{j , j∗} ⊆ B△B ′ (possibly = {i , i∗}) s.t. B1△{i , i∗, j , j∗} ∈ B.

Basis = each element of B
Circuits = subtransversals not contained in any basis

Ex. 1 . . . n 1∗ . . . n∗

n In Σ

B ∈ Tn

A = & Σ is symmetric =⇒ B = {B ∈ Tn : det(A[B]) ̸= 0}

Proposition (K. 2024)

If M = (2n,B) is an antisymmetric matroid, then (2n,B ∩ Tn) is a symmetric matroid.

The converse is open.
Note: Two distinct antisymmetric matroid may induce the same symmetric matroid.
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Even symmetric matroids

A symmetric matroid on 2n is even if |B ∩ [n]| have the same parity for all bases B.

Proposition (K. 2024)

If M = (2n,B) is an even symmetric matroid, then ∃!B′ ⊆ An s.t. (2n,B ∪ B′) is an
antisymmetric matroid.

{Matroids} ⊆ {Even Sym Mat}
⊆

⊆

{Symmetric Mat}

{Antisym Mat}

Symmetric matroids (Late 1980s) ≡ Delta-matroids, 2-matroids, Metroids,
Pseudomatroids, Lagrangian (symplectic) matroids [Coxeter matroids of type C]

* The ‘strong’ basis exchange property does not hold and fundamental circuits may not
exist for symmetric matroids.

Even symmetric matroids ≡ Pfaffian structures (Kung 1978), Even delta-matroids, Tight
2-matroids, Lagrangian orthogonal matroids [Coxeter matroids of type D]

* Even symmetric matroids are ‘nice’ combinatorial structure for understanding
Lagrangian orthogonal Grassmannian.
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Matroids with coefficients

-1. Tutte 1958: Excluded minors for binary and regular matorids, Homotopy theorem

0. Late 1960’s: Oriented matroids

1. Dress and Wenzel 1991: Matroids with coefficients in fuzzy rings
DW 1992: Valuated matroids

2. Semple and Whittle 1996: Partial field representations of matroids
Pendavingh and van Zwam 2010: Lift theorem and universal partial fields

3. Anderson and Delucchi 2012: Complex/Phased matroids

4. Baker and Bowler 2019: Matroids with coefficients in tracts
Baker and Lorscheid 2020∼: The moduli space and Foundations of matroids
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Antisymmetric matroids with coefficients
A tract is a pair F = (F×,NF ) of a (multiplicative) abelian group F× and a subset NF of
group semiring N[F×] satisfying certain axioms. Abusing notation: F = F× ∪ {0}

Tracts

Partial fields HyperfieldsFields

Definition

A restricted Grassmann-Plücker function on 2n with coefficients in a tract F is a function
φ : Tn ∪ An → F such that φ ̸≡ 0 and satisfies:

(Sym) ∀subtransversal S ∈
(
2n
n

)
& distinct skew pairs {i , i∗}, {j , j∗} non-intersect with S

φ(S ∪ {i , i∗}) = (−1)i+jφ(S ∪ {j , j∗})

(rGP) ∀S ∈
(

2n
n+1

)
∀T ∈

(
2n
n−1

)
satisfying S contains exactly one sp and T contains no sp∑

e∈S\T

(−1)|S<e|+|T<e|φ(S − e)φ(T + e) ∈ NF

An antisymmetric F -matroid is an equivalence class of restricted G–P functions, where
φ ∼ cφ for c ∈ F×.
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Theorem (K. 2024)

{Antisymmetric F -matroids} 1-1←→ {Antisymmetric F -circuit sets}

Antisymmetric matroids with coefficients in tracts F generalize

(1) matroids with coefficients in tracts (Baker and Bowler 2019) and

(2) points in the projective space satisfying the restricted Grassmann-Plücker relations
(equivalently, Lagrangian subspaces) if F = K is a field.

Furthermore, they are compatible with several other concepts such as

(3) the Lagrangian orthogonal matroids (Coxeter matroids of type D) with coefficients
in tracts (Jin and Kim 2023) if −1 = 1 in F ,

(4) the symplectic Dressian and isotropic tropical linear spaces (Rincón 2012 & Balla
and Olarte 2023) if F = T is the tropical hyperfield, and

(5) oriented gaussoids (Boege et al. 2019) if F = S is the sign hyperfield.
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Thank you!
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