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Abstract

A particularly important substructure in modeling joint linear chance-constrained programs with random

right-hand sides and finite sample space is the intersection of mixing sets with common binary variables (and

possibly a knapsack constraint). In this paper, we first revisit basic mixing sets by establishing a strong and

previously unrecognized connection to submodularity. In particular, we show that mixing inequalities with

binary variables are nothing but the polymatroid inequalities associated with a specific submodular function.

This submodularity viewpoint enables us to unify and extend existing results on valid inequalities and convex

hulls of the intersection of multiple mixing sets with common binary variables. Then, we study such intersections

under an additional linking constraint lower bounding a linear function of the continuous variables. This is

motivated from the desire to exploit the information encoded in the knapsack constraint arising in joint linear

CCPs via the quantile cuts. We propose a new class of valid inequalities and characterize when this new class

along with the mixing inequalities are sufficient to describe the convex hull.

1 Introduction

Given a probability space (Ω,F ,P), a joint linear chance-constrained program (CCP) with right-hand side

uncertainty is an optimization problem of the following form:

min h>x (1a)

s.t. P [Ax ≥ b(ω)] ≥ 1− ε (1b)

x ∈ X ⊆ Rm, (1c)

where X ⊆ Rm is a domain for the decision variables x, ε ∈ (0, 1) is a risk level, b(ω) ∈ Rk is the random

right-hand side vector that depends on the random variable ω ∈ Ω, and A, h are matrices of appropriate dimension.
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For k = 1 (resp., k > 1), inequality (1b) is referred to as an individual (resp., joint) chance constraint. Here,

we seek to find a solution x ∈ X satisfying the chance constraint (1b), enforcing that Ax ≥ b(ω) holds with

probability at least the given confidence level 1− ε, while minimizing the objective (1a). In the case of continuous

distributions governing the uncertainty, i.e., when Ω is continuous, a classical technique is to use the Sample

Average Approximation (SAA) to approximate Ω via a set of sample scenarios ω1, . . . , ωn and reduce the problem

to the case with a finite-sample distribution; we refer the interested reader to [7, 8, 22] for further details of SAA

for CCPs.

Joint chance constraints are used to model risk-averse decision-making problems in various applications, such as

supply chain logistics [16, 18, 25, 37], chemical processes [13, 14], water quality management [31], and energy

[32]. Problems with joint chance constraints have been extensively studied (see [27] for background and an

extensive list of references) and they are known to be notoriously challenging because the resulting feasible region

is nonconvex even if all other constraints x ∈ X and the restrictions inside the chance constraints are convex.

Consequently, the classical techniques to model CCPs with discrete distributions rely on converting them into

equivalent mixed-integer programs with binary variables and big-M constraints.

In this paper, we consider joint linear CCPs with random right-hand sides under the finite sample space assumption.

In particular, we assume that Ω =
{
ω1, . . . , ωn

}
for some integer n ≥ 1 and that P

[
ω = ωi

]
= pi for i ∈ [n] for

some p1, . . . , pn ≥ 0 with
∑
i∈[n] pi = 1, where for any positive integer n, we define [n] to be the set {1, . . . , n}.

In this setting, Luedtke et al. [23], Ruszczyński [29] observed that the joint linear CCP, defined by (1), can be

reformulated as a mixed-integer linear program as follows:

min h>x (2a)

s.t. x ∈ X ⊆ Rm, Ax = b+ y, (2b)

yj ≥ wij(1− zi), ∀i ∈ [n], ∀j ∈ [k], (2c)∑
i∈[n]

pizi ≤ ε, (2d)

y ∈ Rk+, z ∈ {0, 1}n, (2e)

where b ∈ Rk is some vector satisfying b(ωi) ≥ b for all i and wi = (wi1, . . . , wik)> denotes b(ωi)− b. Note

that by definition of b, it follows that the data vector wi is nonnegative for all i ∈ [n]. Observe that Ax ≥ b are

implicit inequalities, due to the chance constraint (1b) with 1 − ε > 0. Here, zi is introduced as an indicator

variable to model the event Ax ≥ b(ωi). More precisely, when zi = 0, the constraints (2c) enforce that y ≥ wi
holds and thus Ax ≥ b(ωi) is satisfied. On the other hand, when zi = 1, it follows that yj ≥ 0 and Ax ≥ b, which

is satisfied by default. Therefore, constraints (2c) are referred to as big-M constraints. Finally, (2d) enforces that

the probability of Ax ≥ b(ωi) being violated is at most ε.

The size of the deterministic equivalent formulation of the joint CCP given by (2) grows linearly with the number

of scenarios. Unfortunately, such a reformulation based on big-M constraints comes with the disadvantage that

the corresponding relaxations obtained by relaxing the binary variables into continuous are weak. Thus, in order
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to achieve effectiveness in practical implementation, these reformulations must be strengthened with additional

valid inequalities.

A particularly important and widely applicable class of valid inequalities that strengthen the big-M reformulations

of CCPs rely on a critical specific substructure in the formulation (2), called a mixing set with binary variables;

see e.g., Luedtke et al. [23] and Küçükyavuz [15]. Formally, given a vector w = {wi} ∈ Rn+, a mixing set with

binary variables is defined as follows:

MIXj := {(yj , z) ∈ R+ × {0, 1}n : yj + wizi ≥ wi ∀i ∈ [n]} ;

hence the set defined by (2c) and (2e), i.e.,{
(y, z) ∈ Rk+ × {0, 1}n : yj + wizi ≥ wi ∀i ∈ [n], ∀j ∈ [k]

}
,

is nothing but a joint mixing set that shares common binary variables z, but independent continuous variables

yj , j ∈ [k]. Also, it is worthwhile to note that the constraint (2d) is a knapsack constraint. Therefore, the

formulation (2) can be strengthened by the inclusion of valid inequalities originating from the set defined by

(2c)–(2e).

The term mixing set is originally coined by Günlük and Pochet [12] for the sets of the form

GMIX := {(y, z) ∈ R+ × Zn : y + uzi ≥ qi ∀i ∈ [n]} ,

where the parameters are u ∈ R+ and q = (q1, . . . , qn)> ∈ Rn. Such sets GMIX with general integer variables

have applications in lot sizing and capacitated facility location problems; see e.g., [9, 10, 12, 24, 39] (see also [33]

for a survey of the area). For mixing sets with general integer variables such as GMIX defined above, Günlük and

Pochet [12] introduced the so-called mixing inequalities—an exponential family of linear inequalities that admits

an efficient separation oracle—and showed that this class of inequalities are sufficient to describe the associated

convex hull of the sets GMIX. In fact, prior to [12], in the context of lot-sizing problems, Pochet and Wolsey [26,

Theorem 18] obtained the same result, albeit without using the naming convention of mixing sets/inequalities.

Furthermore, the equivalence of MIXj and GMIX under the additional domain restrictions z ∈ {0, 1}n and the

assumption u ≥ maxi qi is immediate. The appearance of mixing sets with binary variables dates back to the

work of Atamtürk et al. [5] on vertex covering. Essentially, it was shown in [5] that the intersection of several

sets of the form MIXj with common binary variables z but separate continuous variables yj , j ∈ [k] can be

characterized by the intersection of the corresponding star inequalities; see [5, Theorem 3]. Furthermore, it is

well-known [23] that mixing inequalities for MIXj are equivalent to the star inequalities introduced in [5]. We

will give a formal definition of mixing (star) inequalities for mixing sets with binary variables in Section 3.

Due to the importance of their use in joint CCPs, the mixing (with knapsack) substructure (2c)–(2e) present in the

reformulations of joint CCPs has received a lot of attention in the more recent literature.

• For general k, i.e., when the number of linear constraints inside the chance constraint is more than one,

Atamtürk et al. [5] proved that the convex hull of a joint mixing set of the form (2c) and (2e) can be

described by applying the mixing inequalities.
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• For k = 1, Luedtke et al. [23], Küçükyavuz [15], and Abdi and Fukasawa [1] suggested valid inequalities

for a single mixing set subject to the knapsack constraint (2d).

• For general k, Küçükyavuz [15] and Zhao et al. [40] proposed valid inequalities for a joint mixing set with

a knapsack constraint.

Luedtke et al. [23] showed that the problem is NP-hard for k > 1 even when the restrictions inside the chance

constraints are linear and each scenario has equal probability, in which case the knapsack constraint (2d) becomes

a cardinality constraint. However, Küçükyavuz [15] argued that the problem for k = 1 under equiprobable

scenarios is polynomial-time solvable and gave a compact and tight extended formulation based on disjunctive

programming. Note that while not explicitly stated in [15], when k = 1 the polynomial-time solvability argument

extends for the unequal probability case.

Many of these prior works aim to convexify a (joint) mixing set with a knapsack constraint directly. In contrast, in

our paper we exploit the knapsack structure through an indirect approach based on quantile inequalities. Given

c ∈ Rk+ and δ > 0, the (1− δ)-quantile for c>y is defined as

qc,δ := min

c>y :
∑
i∈[n]

pizi ≤ δ, (y, z) satisfies (2c), (2e)

 ,

and the inequality c>y ≥ qc,δ is called a (1 − δ)-quantile cut. By definition, a (1 − ε)-quantile cut is valid

for the solutions satisfying (2c)–(2e). The quantile cuts have been studied in [2, 17, 21, 28, 30, 35], and their

computational effectiveness has been observed in practice. As opposed to mixing sets and associated mixing

inequalities, the quantile cuts link many continuous variables together; it is plausible to conjecture that this linking

of the continuous variables is the one of the main sources of their effectiveness in practice.

In this paper we study a generalization of the mixing sets as follows: given integers n, k ≥ 1, a matrix

W = {wij} ∈ Rn×k+ , a vector ` ∈ Rk+ and a nonnegative number ε ≥ 0, we consider the set defined by

yj + wijzi ≥ wij , ∀i ∈ [n], ∀j ∈ [k], (3a)

yj ≥ `j , ∀j ∈ [k], (3b)

y1 + · · ·+ yk ≥ ε+
∑
j∈[k]

`j , (3c)

y ∈ Rk, z ∈ {0, 1}n. (3d)

We denote this set byM(W, `, ε). When W ∈ Rn×k+ , constraints (3a) are often called big-M constraints, and

constraints (3b) impose lower bounds on the continuous variables y. Notice that (3c) is a constraint linking all

continuous variables, but it is non-redundant only if ε is strictly positive. We will refer to (3c) as the linking

constraint. When k = 1, ` = 0, and ε = 0, the setM(W, `, ε) is nothing but MIX1, i.e., the mixing set with

binary variables, studied in the literature [1, 15, 19, 23, 40]. Sets of the formM(W,0, 0) for general k > 1 were

first considered by Atamtürk et al. [5]; we will call the setM(W,0, 0) a joint mixing set in order to emphasize
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that k can be taken to be strictly greater than 1. We will refer to a set of the formM(W, `, ε) for general `, ε as a

joint mixing set with lower bounds.

The structure of a joint mixing set with lower boundsM(W, `, ε) is flexible enough to simultaneously work with

quantile cuts. For j ∈ [k], let `j denote the (1− ε)-quantile for c>y = yj . Then, for any j ∈ [k], we have

`j = min
{

max
i∈[n]
{wij(1− zi)} : z satisfies (2d), (2e)

}
.

Note that `j can be computed in O(n logn) time, because without loss of generality we can assume w1j ≥ · · · ≥
wnj after possible reordering of [n], and the optimum value of the above optimization problem is precisely wtj
where t is the index such that

∑
i≤t−1 pi ≤ ε and

∑
i≤t pi > ε. Although the (1 − ε)-quantile for

∑
j∈[k] yj

seems harder to compute, at least we know that the value is greater than or equal to
∑
j∈[k] `j . Therefore, we

have quantile cuts yj ≥ `j for j ∈ [k] and
∑
j∈[k] yj ≥ ε +

∑
j∈[k] `j for some ε ≥ 0, and the set defined

by these quantile cuts and the constraints (2c), (2e) is precisely a set of the formM(W, `, ε). Similarly, it is

straightforward to capture the quantile cut c>y ≥ ε+
∑
j∈[k] cj`j for general c ∈ Rk+, because we can rewrite

yj ≥ `j for j ∈ [k], (2c) and (2e) in terms of c1y1, . . . , cjyj , and thus the resulting system is equivalent to a joint

mixing set with lower bounds.

Next, we summarize our contributions and provide an outline of the paper.

1.1 Contributions and outline

In this paper, we study the polyhedral structure ofM(W, `, ε), i.e., joint mixing sets with lower bounds, mainly in

the context of joint linear CCPs with random right-hand sides and a discrete probability distribution. Our approach

is based on a connection between mixing sets and submodularity that has been overlooked in the literature.

Therefore, in Section 2.1, we first discuss basics of submodular functions and polymatroid inequalities as they

relate to our work. In addition, we devote Section 2.2 to establish new tools on a particular joint submodular

structure; these new tools play a critical role in our analysis of the joint mixing sets.

Our contributions are as follows:

(i) We first establish a strong and somewhat surprising connection between polymatroids and the basic mixing

sets with binary variables (Section 3). It is well-known that submodularity imposes favorable characteristics

in terms of explicit convex hull descriptions via known classes of inequalities and their efficient separation.

In particular, the idea of utilizing polymatroid inequalities from submodular functions has appeared in

various papers in other contexts for specific binary integer programs [3, 4, 6, 34, 36, 38]. Notably, mixing

sets have been known to be examples of simple structured sets whose convex hull descriptions possess similar

favorable characteristics. However, to the best of our knowledge, the connection between submodularity and

mixing sets has not been recognized before. Establishing this connection enables us to unify and generalize

various existing results on mixing sets with binary variables.
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(ii) In Section 4, we propose a new class of valid inequalities, referred to as the aggregated mixing inequalities,

for the setM(W, `, ε). One important feature of the class of aggregated mixing inequalities as opposed to

the standard mixing inequalities is that it is specifically designed to simultaneously exploit the information

encoded in multiple mixing sets with common binary variables.

(iii) In Section 5, we establish conditions under which the convex hull of the setM(W, `, ε) can be characterized

through a submodularity lens. We show that the new class of aggregated mixing inequalities, in addition to

the classical mixing inequalities, are sufficient under appropriate conditions.

(iv) In Section 6, we revisit the results from a recent paper by Liu et al. [19] on modeling two-sided CCPs. We

show that mixing sets of the particular structure considered in [19] is nothing but a joint mixing set with

lower bound structure with k = 2 and two additional constraints involving only the continuous variables

y. Thus, our results on aggregated mixing inequalities are immediately applicable to two-sided CCPs. In

addition, we show that, due to the simplicity of the additional constraints on the variables y in two-sided

CCPs, our general convex hull results onM(W, `, ε) can be extended easily to accommodate the additional

constraints on y and recover the convex hull results from [19].

Finally, we would like to highlight that although our results are motivated by joint CCPs, they are broadly

applicable to other settings where the intersection of mixing sets with common binary variables is present. In

addition, applicability of our results from Section 2.2 extend to other cases where epigraphs of general submodular

functions appear in a similar structure.

1.2 Notation

Given a positive integer n, we let [n] := {1, . . . , n}. We let 0 denote the vector of all zeros whose dimension

varies depending on the context, and similarly, 1 denotes the vector of all ones. ej denotes the unit vector

whose jth coordinate is 1, and its dimension depends on the context. For V ⊆ [n], 1V ∈ {0, 1}n denotes the

characteristic vector, or the incidence vector, of V . For a set Q, we denote its convex hull and the extreme points

of its convex hull by conv(Q) and ext(Q) respectively. For α ∈ R, (α)+ denotes max{0, α}. Given a vector

π ∈ Rn, and a set V ⊆ [n], we define π(V ) =
∑
i∈V πi. For notational purposes, when S = ∅, we define

maxi∈S si = 0 and
∑
i∈S si = 0.

2 Submodular functions and polymatroid inequalities

In this section, we start with a brief review of submodular functions and polymatroid inequalities, and then in

Section 2.2 we establish tools on joint submodular constraints that are useful for our analysis ofM(W, `, ε).
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2.1 Preliminaries

Consider an integer n ≥ 1 and a set function f : 2[n] → R. Recall that f is submodular if

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B), ∀A,B ⊆ [n].

Given a submodular set function f , Edmonds [11] introduced the notion of extended polymatroid of f , which is a

polyhedron associated with f defined as follows:

EPf := {π ∈ Rn : π(V ) ≤ f(V ), ∀V ⊆ [n]} . (4)

Observe that EPf is nonempty if and only if f(∅) ≥ 0. In general, a submodular function f need not satisfy

f(∅) ≥ 0. Nevertheless, it is straightforward to see that the function f − f(∅) is submodular whenever f is

submodular, and that (f − f(∅))(∅) = 0. Hence, EPf−f(∅) is always nonempty. Hereinafter, we use notation f̃

to denote f − f(∅) for any set function f .

A function on {0, 1}n can be interpreted as a set function over the subsets of [n], and thus, the definitions of

submodular functions and extended polymatroids extend to functions over {0, 1}n. To see this, consider any

integer n ≥ 1 and any function f : {0, 1}n → R. With a slight abuse of notation, define f(V ) := f(1V )
for V ⊆ [n] where 1V denotes the characteristic vector of V . We say that f : {0, 1}n → R is a submodular

function if the corresponding set function over [n] is submodular. We can also define the extended polymatroid of

f : {0, 1}n → R as in (4). Throughout this paper, given a function f : {0, 1}n → R, we will switch between its

set function interpretation and its original form, depending on the context.

Given a submodular function f : {0, 1}n → R, its epigraph is the mixed-integer set given by

Qf = {(y, z) ∈ R× {0, 1}n : y ≥ f(z)} .

It is well-known that when f is submodular, one can characterize the convex hull of Qf through the extended

polymatroid of f̃ .

Theorem 2.1 (Lovász [20], Atamtürk and Narayanan [4, Proposition 1]). Let f : {0, 1}n → R be a submodular

function. Then

conv(Qf ) =
{

(y, z) ∈ R× [0, 1]n : y ≥ π>z + f(∅), ∀π ∈ EPf̃
}
.

The inequalities y ≥ π>z + f(∅) for π ∈ EPf̃ are called the polymatroid inequalities of f . Although there are

infinitely many polymatroid inequalities of f , for the description of conv(Qf ), it is sufficient to consider only the

ones corresponding to the extreme points of EPf̃ . We refer to the polymatroid inequalities defined by the extreme

points of EPf̃ as the extremal polymatroid inequalities of f . Moreover, Edmonds [11] provided the following

explicit characterization of the extreme points of EPf̃ .

Theorem 2.2 (Edmonds [11]). Let f : {0, 1}n → R be a submodular function. Then π ∈ Rn is an extreme

point of EPf̃ if and only if there exists a permutation σ of [n] such that πσ(t) = f(Vt) − f(Vt−1), where

Vt = {σ(1), . . . , σ(t)} for t ∈ [n] and V0 = ∅.
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The algorithmic proof of Theorem 2.2 from Edmonds [11] is of interest. Suppose that we are given a linear

objective z̄ ∈ Rn; then maxπ
{
z̄>π : π ∈ EPf̃

}
can be solved by the following “greedy" algorithm: given z̄ ∈

Rn, first find an ordering σ such that z̄σ(1) ≥ · · · ≥ z̄σ(n), and let Vt := {σ(1), . . . , σ(t)} for t ∈ [n] and V0 = ∅.
Then, π ∈ Rn where πσ(t) = f(Vt) − f(Vt−1) for t ∈ [n] is an optimal solution to maxπ

{
z̄>π : π ∈ EPf̃

}
.

Note that the implementation of this algorithm basically requires a sorting algorithm to compute the desired

ordering σ, and this can be done in O(n logn) time. Thus, the overall complexity of this algorithm is O(n logn).

Consequently, given a point (ȳ, z̄) ∈ R× Rn, separating a violated polymatroid inequality amounts to solving the

optimization problem maxπ
{
z̄>π : π ∈ EPf̃

}
, and thus we arrive at the following result.

Corollary 1 (Atamtürk and Narayanan [4, Section 2]). Let f : {0, 1}n → R be a submodular function. Then the

separation problem for polymatroid inequalities can be solved in O(n logn) time.

2.2 Joint submodular constraints

In this section, we establish tools that will be useful throughout this paper. Recall that when f is submodular, the

convex hull of its epigraph Qf is described by the extremal polymatroid inequalities of f . Henceforth, we use the

restriction (y, z) ∈ conv(Qf ) as a constraint to indicate the inclusion of the corresponding extremal polymatroid

inequalities of f in the constraint set.

Let f1, . . . , fk : {0, 1}n → R be k submodular functions. Let us examine the convex hull of the following

mixed-integer set:

Qf1,...,fk :=
{

(y, z) ∈ Rk × {0, 1}n : y1 ≥ f1(z), . . . , yk ≥ fk(z)
}
.

When k = 1, the set Qf1 is just the epigraph of the submodular function f1 on {0, 1}n. For general k, Qf1,...,fk is

described by k submodular functions that share the same set of binary variables. For (y, z) ∈ Qf1,...,fk , constraint

yj ≥ fj(z) can be replaced with (yj , z) ∈ Qfj for j ∈ [k]. Therefore, the polymatroid inequalities of fj with

left-hand side yj , of the form yj ≥ π>z+ fj(∅) with π ∈ EPf̃j , are valid for Qf1,...,fk . In fact, these inequalities

are sufficient to describe conv(Qf1,...,fk) as well.

Proposition 1 (Baumann et al. [6, Theorem 2]). Let the functions f1, . . . , fk : {0, 1}n → R be submodular.

Then,

conv (Qf1,...,fk) =
{

(y, z) ∈ Rk × [0, 1]n : (yj , z) ∈ conv(Qfj ), ∀j ∈ [k]
}
.

By Proposition 1, when f1, . . . , fk are submodular, conv (Qf1,...,fk) can be described by the polymatroid

inequalities of fj with left-hand side yj for j ∈ [k]. The submodularity requirement on all of the functions fj in

Proposition 1 is indeed critical. We demonstrate in the next example that even when k = 2, and only one of the

functions fi is not submodular, we can no longer describe the corresponding convex hull using the polymatroid

inequalities for fj .
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Example 1. Let f1, f2 : {0, 1}2 → R be defined by

f1(0, 0) = f1(1, 1) = 0, f1(0, 1) = f1(1, 0) = 1 and f2(0, 0) = f2(1, 1) = 1, f2(0, 1) = f2(1, 0) = 0.

While f1 is submodular, f2 is not. Since f1(0, 0) = f1(1, 1) = 0, we deduce that (0, 1/2, 1/2) ∈ conv(Qf1).

Similarly, as f2(0, 1) = f2(1, 0) = 0, it follows that (0, 1/2, 1/2) ∈ conv(Qf2). This implies that

(0, 0, 1/2, 1/2) ∈
{

(y, z) ∈ R2 × [0, 1]n : (y1, z) ∈ conv(Qf1), (y2, z) ∈ conv(Qf2)
}
.

Notice that, by definition of f1, f2, we have f1(z) + f2(z) = 1 for each z ∈ {0, 1}n, implying in turn that

y1 + y2 ≥ 1 is valid for conv (Qf1,f2). Therefore, the point (0, 0, 1/2, 1/2) cannot be in conv (Qf1,f2). So, it

follows that conv (Qf1,f2) 6=
{

(y, z) ∈ Rk × [0, 1]n : (yj , z) ∈ conv(Qfj ), ∀j ∈ [2]
}

. �

In Section 3, we will discuss how Proposition 1 can be used to provide the convex hull description of a joint

mixing setM(W,0, 0).

We next highlight a slight generalization of Proposition 1 that is of interest for studyingM(W, `, ε). Observe

that Qf1,...,fk is defined by multiple submodular constraints with independent continuous variables yj . We can

replace this independence condition by a certain type of dependence. Consider the following mixed-integer set:

P =
{

(y, z) ∈ Rk × {0, 1}n : a>1 y ≥ f1(z), . . . , a>my ≥ fm(z)
}

(5)

where a1, . . . , am ∈ Rk+ \ {0} and f1, . . . , fm : {0, 1}n → R are submodular functions. Here, m can be larger

than k, so a1, . . . , am need not be linearly independent. Now consider α =
∑
j∈[m] cjaj for some c ∈ Rm+ .

Notice that fα ≥
∑
j∈[m] cjfj where fα : {0, 1}n → R is defined as

fα(z) := min
{
α>y : (y, z) ∈ P

}
, ∀z ∈ {0, 1}n. (6)

Definition 1. We say that a1y, . . . , amy are weakly independent with respect to f1, . . . , fm if for any α =∑
j∈[m] cjaj with c ∈ Rm+ , we have fα =

∑
j∈[m] cjfj . �

It is straightforward to see that if a1, . . . , am are distinct unit vectors, i.e., m = k and a>j y = yj for j ∈ [k],
then a>1 y, . . . , a

>
my are weakly independent. It is also easy to see that if a1, . . . , am are linearly independent,

then a>1 y, . . . , a
>
my are weakly independent. Based on this definition, we have the following slight extension of

Proposition 1.

Proposition 2. Let P be defined as in (5). If a>1 y, . . . , a
>
my are weakly independent with respect to f1, . . . , fm,

then

conv (P) =
{

(y, z) ∈ Rk × [0, 1]n : (a>j y, z) ∈ conv(Qfj ), ∀j ∈ [m]
}
.

Proof. DefineR :=
{

(y, z) ∈ Rk × [0, 1]n : (a>j y, z) ∈ conv(Qfj ), ∀j ∈ [m]
}

. It is clear that conv (P) ⊆ R.

For the direction conv (P) ⊇ R, we need to show that any inequality α>y + β>z ≥ γ valid for conv (P) is also
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valid forR. To that end, take an inequality α>y + β>z ≥ γ valid for conv (P). Then, since α>r ≥ 0 for every

recessive direction (r,0) of conv(P), we deduce by Farkas’ lemma that α =
∑
j∈[m] cjaj for some c ∈ Rm+ .

Moreover, α>y + β>z ≥ γ is valid for

Q :=
{

(y, z) ∈ Rk × {0, 1}n : α>y ≥ fα(z)
}
,

where fα is defined as in (6). Since a>1 y, . . . , a
>
my are weakly independent with respect to f1, . . . , fm, it follows

that fα =
∑
j∈[m] cjfj , and therefore, fα is submodular. Then it is not difficult to see that

conv(Q) =
{

(y, z) ∈ Rk × [0, 1]n : (α>y, z) ∈ conv(Qfα)
}
.

Therefore, to show that α>y + β>z ≥ γ is valid forR, it suffices to argue thatR ⊆ conv(Q). Let (ȳ, z̄) ∈ R.

Then, by Theorem 2.1, it suffices to show that α>ȳ ≥ π>z̄ + fα(∅) holds for every extreme point π of EPf̃α .

To this end, take an extreme point π of EPf̃α . By Theorem 2.2, there exists a permutation σ of [n] such that

πσ(t) = fα(Vt) − fα(Vt−1) where Vt = {σ(1), . . . , σ(t)} for t ∈ [n] and V0 = ∅. Now, for j ∈ [m], let

πj ∈ Rn be the vector such that πjσ(t) = fj(Vt) − fj(Vt−1) for t ∈ [n]. Then, we have π =
∑
j∈[m] cjπ

j

because fα =
∑
j∈[m] cjfj . Moreover, by Theorem 2.2, πj is an extreme point of EPf̃j . Hence, due to our

assumption that (a>j ȳ, z̄) ∈ conv(Qfj ), Theorem 2.1 implies a>j ȳ ≥ (πj)>z̄ + πj(∅) is valid for all j ∈ [m].
Since α>ȳ ≥ π>z̄ + fα(∅) is obtained by adding up a>j ȳ ≥ (πj)>z̄ + πj(∅) for j ∈ [m], it follows that

α>ȳ ≥ π>z̄ + fα(∅) is valid, as required. We just have shown that R ⊆ conv(Q), thereby completing the

proof.

In Section 5, we will use Proposition 2 to study the convex hull ofM(W, `, ε), i.e., a joint mixing set with lower

bounds. Again, the submodularity assumption on f1, . . . , fm is important in Proposition 2. Recall that Example 1

demonstrates that in Proposition 2 even when m is taken to be equal to k and the vectors aj ∈ Rk, j ∈ [m] = [k],
are taken to be the unit vectors in Rk, the statement does not hold if one of the functions fj is not submodular.

3 Mixing inequalities and joint mixing sets

In this section, we establish that mixing sets with binary variables are indeed nothing but the epigraphs of certain

submodular functions. In addition, through this submodularity lens, we prove that the well-known mixing (or

star) inequalities for mixing sets are nothing but the extremal polymatroid inequalities.

Recall that a joint mixing set with lower boundsM(W, `, ε), where W ∈ Rn×k+ , ` ∈ Rk+ and ε ≥ 0, is defined

by (3). In this section, we study the case when ε = 0, and characterize the convex hull ofM(W, `, 0) for any

W ∈ Rn×k+ and ` ∈ Rk+. As corollaries, we prove that the famous star/mixing inequalities are in fact polymatroid

inequalities, and we recover the result of Atamtürk et al. [5, Theorem 3] on joint mixing setsM(W,0, 0).

Given a matrix W = {wij} ∈ Rn×k+ and a vector ` ∈ Rk+, we define the following mixed-integer set:

P(W, `, ε) =
{

(y, z) ∈ Rk × {0, 1}n : (8)− (10)
}

(7)
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where

yj ≥ wijzi, ∀i ∈ [n], j ∈ [k], (8)

yj ≥ `j , ∀j ∈ [k], (9)∑
j∈[k]

yj ≥ ε+
∑
j∈[k]

`j . (10)

Remark 1. By definition, (y, z) ∈ M(W, `, ε) if and only if (y,1− z) ∈ P(W, `, ε). Thus, the convex hull of

M(W, `, ε) can be obtained after taking the convex hull of P(W, `, ε) and complementing the z variables. �

For j ∈ [k], we define

fj(z) := max
{
`j , max

i∈[n]
{wijzi}

}
, ∀z ∈ {0, 1}n. (11)

Then, the set P(W, `, 0) admits a representation as the intersection of epigraphs of the functions fj(z):

P(W, `, 0) =
{

(y, z) ∈ Rk × {0, 1}n : yj ≥ fj(z), ∀j ∈ [k]
}
.

We next establish that the functions fj(z), j ∈ [k] are indeed submodular.

Lemma 1. Let ` ∈ Rk+. For each j ∈ [k], the function fj defined as in (11) satisfy fj(∅) = `j and it is

submodular.

Proof. Let j ∈ [k]. Notice that fj(∅) = fj(0) = max {`j , 0} = `j . In order to establish the submodularity of fj ,

for ease of notation, we drop the index j and use f to denote fj . As before, for each V ⊆ [n], let f(V ) be defined

as f(1V ) where 1V ∈ {0, 1}n denotes the characteristic vector of V . Consider two sets U, V ⊆ [n]. By definition

of f , we have max{f(U), f(V )} = f(U ∪ V ), and min{f(U), f(V )} ≥ f(U ∩ V ). Then we immediately get

f(U) + f(V ) = max{f(U), f(V )}+ min{f(U), f(V )} ≥ f(U ∪ V ) + f(U ∩ V ),

thereby proving that fj is submodular, as required.

Corollary 2. Let ` ∈ Rk+ and fj be as defined in (11). Then,

conv(M(W, `, 0)) =
{

(y, z) ∈ Rk × [0, 1]n : (yj ,1− z) ∈ conv(Qfj ), ∀j ∈ [k]
}
,

i.e., the convex hull ofM(W, `, 0) is given by the extremal polymatroid inequalities of particular submodular

functions.

Proof. We deduce from Proposition 1 that

conv(P(W, `, 0)) =
{

(y, z) ∈ Rk × [0, 1]n : (yj , z) ∈ conv(Qfj ), ∀j ∈ [k]
}
,

which immediately implies the desired relation via Remark 1 and Theorem 2.1 since the constraint (yj ,1− z) ∈
conv(Qfj ) is equivalent to the set of the corresponding extremal polymatroid inequalities.
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Corollary 2 establishes a strong connection between the mixing sets with binary variables and the epigraphs of

submodular functions, and implies that the convex hull of joint mixing sets are given by the extremal polymatroid

inequalities. To the best of our knowledge this connection between mixing sets with binary variables and

submodularity has not been identified in the literature before.

An explicit characterization of the convex hull of a mixing set with binary variables in the original space has

been studied extensively in the literature. Specifically, Atamtürk et al. [5] gave the explicit characterization

of conv(M(W,0, 0)) in terms of the so called mixing (star) inequalities. Let us state the definition of these

inequalities here.

Definition 2. We call a sequence {j1 → · · · → jτ} of indices in [n] a j-mixing-sequence if wj1j ≥ wj2j ≥ · · · ≥
wjτ j ≥ `j . �

For W = {wij} ∈ Rn×k+ and ` ∈ Rk+, the mixing inequality derived from a j-mixing-sequence {j1 → · · · → jτ}
is defined as the following (see [12, Section 2]):

yj +
∑
s∈[τ ]

(wjsj − wjs+1j)zjs ≥ wj1j , (MixW,`)

where wjτ+1j := `j for convention. Atamtürk et al. [5, Proposition 3] showed that the inequality (MixW,`) for

any j-mixing-sequence {j1 → · · · → jτ} is valid forM(W, `, 0) when ` = 0. Luedtke [21, Theorem 2] later

observed that the inequality (MixW,`) for any j-mixing-sequence {j1 → · · · → jτ} is valid forM(W, `, 0) for

any ` ∈ Rk+.

Given these results from the literature on the convex hull characterizations of mixing sets and Corollary 2, it

is plausible to think that there must be a strong connection between the extremal polymatroid inequalities and

the mixing (star) inequalities. We next argue that the extremal polymatroid inequalities given by the constraint

(yj ,1− z) ∈ conv(Qfj ) are precisely the mixing (star) inequalities.

Proposition 3. Let W = {wij} ∈ Rn×k+ and ` ∈ Rk+. Consider any j ∈ [k]. Then, for every extreme point π of

EPf̃j , there exists a j-mixing-sequence {j1 → · · · → jτ} in [n] that satisfies the following:

(1) wj1j = max {wij : i ∈ [n]},

(2) the corresponding polymatroid inequality yj +
∑
i∈[n] πizi ≥ `j +

∑
i∈[n] πi is equivalent to the mixing

inequality (MixW,`) derived from the sequence {j1 → · · · → jτ}.

In particular, for any j ∈ [k], the extremal polymatroid inequality is of the form

yj +
∑
s∈[τ ]

(wjsj − wjs+1j)zjs ≥ max {wij : i ∈ [n]} , (Mix∗W,`)

where wj1j = max {wij : i ∈ [n]} and wjτ+1j := `j .

Proof. By Theorem 2.2, there exists a permutation σ of [n] such that πσ(t) = fj(Vt) − fj(Vt−1) where Vt =
{σ(1), . . . , σ(t)} for t ∈ [n] and V0 = ∅. By definition of fj in (11), we have `j = fj(V0) ≤ fj(V1) ≤
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· · · ≤ fj(Vn), because ∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vn. Let {t1, . . . , tτ} be the collection of all indices t satisfying

fj(Vt−1) < fj(Vt). Without loss of generality, we may assume that wσ(t1)j ≥ · · · ≥ wσ(tτ )j . Notice that

wσ(tτ )j > `j , because fj(Vtτ ) > fj(Vtτ−1) ≥ `j . Then, after setting js = σ(ts) for s ∈ [τ ], it follows that

{j1 → · · · → jτ} is a j-mixing-sequence. Moreover, we have wj1j = fj(Vt1) = fj([n]) = max {wij : i ∈ [n]}.
Therefore, we deduce that πi = wjsj − wjs+1j if i = σ(ts) = js for some s ∈ [τ ] and πi = 0 otherwise.

As the name "mixing" inequalities is more commonly used in the literature than "star" inequalities, we will stick

to the term "mixing" hereinafter to denote the inequalities of the form (MixW,`) or (Mix∗W,`).

Proposition 1 and consequently Corollary 2 imply that for any facet defining inequality of the set conv(M(W, `, 0)),

there is a corresponding extremal polymatroid inequality. Proposition 3 implies that mixing inequalities are

nothing but the extremal polymatroid inequalities. Therefore, an immediate consequence of Corollary 2 and

Proposition 3 is the following result.

Theorem 3.1. Given W = {wij} ∈ Rn×k+ and any ` ∈ Rk+, the convex hull ofM(W, `, 0) is described by the

mixing inequalities of the form (Mix∗W,`) for j ∈ [k] and the bounds 0 ≤ z ≤ 1.

A few remarks are in order.

Remark 2. First, note that Luedtke et al. [23, Theorem 2] showed the validity of inequality (Mix∗W,`) and its

facet condition for a particular choice of ` ∈ Rk+ in the case of k = 1. Also, recall thatM(W,0, 0) is called a

joint mixing set, and Atamtürk et al. [5, Theorem 3] proved that conv(M(W,0, 0)) is described by the mixing

inequalities and the bound constraints y ≥ 0 and z ∈ [0, 1]n. Since Theorem 3.1 applies to M(W, `, 0) for

arbitrary `, it immediately extends [5, Theorem 3] and further extends the validity inequality component of [23,

Theorem 2]. �

Remark 3. Our final remark is that, since the mixing inequalities (Mix∗W,`) for j ∈ [k] are polymatroid inequalities,

they can be separated in O(k n logn) time by a simple greedy algorithm, thanks to Corollary 1. �

4 Aggregated mixing inequalities

As discussed in Section 1, in order to make use of the knapsack constraint in the MIP formulation of joint CCPs

via quantile cuts, we need to study the set M(W, `, ε) for general ε ≥ 0. Unfortunately, in contrast to our

results in Section 3 for the convex hull ofM(W, `, 0), the convex hull ofM(W, `, ε) for general ε ≥ 0 may be

complicated; we will soon see this in Example 2. In this section, we introduce a new class of valid inequalities for

M(W, `, ε) for arbitrary ε ≥ 0. In Sections 5.2 and 5.3, we identify conditions under which these new inequalities

along with the original mixing inequalities are sufficient to give the complete convex hull characterization.

For general ε ≥ 0,M(W, `, ε), given by (3), is a subset ofM(W, `, 0), which means that any inequality valid for

M(W, `, 0) is also valid forM(W, `, ε). In particular, Theorem 3.1 implies that the mixing inequalities of the
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form (MixW,`) are valid forM(W, `, ε). However, unlike the ε = 0 case, we will see that the mixing inequalities

are not sufficient to describe the convex hull ofM(W, `, ε) if ε > 0.

We first present a simplification ofM(W, `, ε). Although it is possible that wij < `j for some i, j when W, ` are

arbitrary, we can reduceM(W, `, ε) to a set of the formM(W `,0, ε) for some W ` =
{
w`ij
}
∈ Rn×k+ .

Lemma 2. Let ` ∈ Rk+. ThenM(W, `, ε) =
{

(y, z) ∈ Rk × Rn : (y − `, z) ∈M(W `,0, ε)
}

, where W ` ={
w`ij
}
∈ Rn×k+ is the matrix whose entries are given by

w`ij = (wij − `j)+ ∀i ∈ [n], j ∈ [k].

Proof. By definition, (y − `, z) ∈M(W `,0, ε) if and only if

yj + (wij − `j)+zi ≥ `j + (wij − `j)+, ∀i ∈ [n], j ∈ [k], (12)

and (y, z) satisfies (3b)–(3d). Consider any j ∈ [k]. If `j > wij , then the constraint (12) becomes yj ≥ `j and the

inequality yj + wijzi ≥ wij is a consequence of yj ≥ `j . On the other hand, if `j ≤ wij , then (12) is equivalent

to yj + (wij − `j)zi ≥ wij , and therefore we have yj ≥ wij when zi = 0 and have yj ≥ `j when zi = 1. Then,

in both cases, it is clear that

{(yj , zi) ∈ R× {0, 1} : yj ≥ `j , yj + (wij − `j)+zi ≥ `j + (wij − `j)+}

is equal to

{(yj , zi) ∈ R× {0, 1} : yj ≥ `j , yj + wijzi ≥ wij} ,

because `j ≥ 0. Hence, we have (y − `, z) ∈M(W `,0, ε) if and only if (y, z) ∈M(W, `, ε), as required.

We deduce from Lemma 2 that

conv(M(W, `, ε)) =
{

(y, z) ∈ Rk × Rn : (y − `, z) ∈ conv(M(W `,0, ε))
}
,

and thus the convex hull description ofM(W, `, ε) can be obtained by taking the convex hull ofM(W `,0, ε).

Moreover, any inequality α>y + β>z ≥ γ is valid forM(W `,0, ε) if and only if α>(y − `) + β>z ≥ γ is valid

forM(W, `, ε).

So, from now on, we assume that ` = 0, and we work overM(W,0, ε) with W ∈ Rn×k+ and ε ≥ 0. Recall that

M(W,0, ε) is the mixed-integer set defined by

yj + wijzi ≥ wij , ∀i ∈ [n], j ∈ [k], (13a)

yj ≥ 0, ∀j ∈ [k], (13b)

y1 + · · ·+ yk ≥ ε, (13c)

y ∈ Rk, z ∈ {0, 1}n. (13d)

Let us begin with an example.
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Example 2. Consider the following mixing set with lower bounds, i.e.,M(W,0, ε) with ε = 7 > 0.
(y, z) ∈ R2

+ × {0, 1}5 :

y1 + 8z1 ≥ 8
y1 + 6z2 ≥ 6
y1 + 13z3 ≥ 13
y1 + z4 ≥ 1
y1 + 4z5 ≥ 4

,

y2 + 3z1 ≥ 3
y2 + 4z2 ≥ 4
y2 + 2z3 ≥ 2
y2 + 2z4 ≥ 2
y2 + z5 ≥ 1

, y1 + y2 ≥ 7


. (14)

The convex hull of this set is given by
(y, z) ∈ R2

+ × [0, 1]5 :

y1 + y2 +z1 + z2 + 8z3 ≥ 17
y1 + y2 +2z2 + 8z3 ≥ 17
y1 + y2 +3z2 + 7z3 ≥ 17
y1 + y2 +2z1 + 3z2 + 5z3 ≥ 17
y1 + y2 +4z1 + z2 + 5z3 ≥ 17

,
the mixing inequalities

with yj for j = 1, 2


.

In this example, the inequalities y1 + 2z1 + 2z2 + 5z3 + z4 + 3z5 ≥ 13 and y2 + 2z2 + z4 + z5 ≥ 4 are

examples of mixing inequalities that are facet-defining. Note that the five inequalities with y1 + y2 are not of

the form (MixW,`). Moreover, these non-mixing inequalities cannot be obtained by simply adding one mixing

inequality involving y1 and another mixing inequality involving y2. The developments we present next on a new

class of inequalities will demonstrate this point, and we will revisit this example again in Example 3. �

The five inequalities with y1 + y2 in Example 2 admit a common interpretation. To explain them, take an integer

θ ∈ [n] and a sequence Θ of θ indices in [n] given by {i1 → i2 → · · · → iθ}. Given two indices in the sequence

ip, iq , we say that ip precedes iq in Θ if p < q. Our description is based on the following definition.

Definition 3. Given a sequence Θ, a j-mixing-subsequence of Θ is the subsequence {j1 → · · · → jτj} of Θ that

satisfies the following property:{
j1, . . . , jτj

}
is the collection of all indices i∗ ∈ Θ satisfying wi∗j ≥ max {wij : i∗ precedes i in Θ} ,

where we define max {wij : iθ precedes i in Θ} = 0 for convention (iθ is the last element, so it precedes no

element in Θ). �

Based on Definition 3, we deduce that the j-mixing-subsequence of Θ is unique for each j ∈ [k] and admits a few

nice structural properties as identified below.

Lemma 3. If {j1 → · · · → jτj} is the j-mixing-subsequence of Θ, then jτj is always the last element iθ of Θ
and wj1j ≥ · · · ≥ wjτ j ≥ 0.

Proof. When p < q, because jp precedes jq in Θ, it follows that wj1j ≥ · · · ≥ wjτj j ≥ 0. The last element iθ
always satisfies wiθj ≥ max {wij : iθ precedes i in Θ} = 0. Therefore, iθ is part of the j-mixing-subsequence

as its last element.

Given Θ = {i1 → i2 → · · · → iθ}, for any j ∈ [n], we denote by Θj = {j1 → · · · → jτj} the j-mixing-

subsequence of Θ. By Definition 2 and Lemma 3, we deduce that {j1 → · · · → jτj} is a j-mixing-sequence.
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Recall that for any j-mixing-sequence {j1 → · · · → jτj}, the corresponding mixing inequality (MixW,`) is of the

following form:

yj +
∑
s∈[τj ]

(wjsj − wjs+1j)zjs ≥ wj1j , (Mix)

where wjτj+1j := 0, and it is valid forM(W,0, ε). In particular, when wj1j = max{wij : i ∈ [n]}, (Mix) is

yj +
∑
s∈[τj ]

(wjsj − wjs+1j)zjs ≥ max{wij : i ∈ [n]}. (Mix*)

Also, for t ∈ [θ],

(witj −max {wij : it precedes i in Θ})+ =

wjsj − wjs+1j if it = js for some s ∈ [τj ],

0 if it is not on Θj .
(15)

Then (Mix) can be rewritten as

yj +
∑
t∈[θ]

(witj −max {wij : it precedes i in Θ})+ zit ≥ wj1j .

In order to introduce our new class of inequalities, we define a constant LW,Θ that depends on W and Θ as

follows:

LW,Θ := min

∑
j∈[k]

(
witj − (witj −max {wij : it precedes i in Θ})+

)
: t ∈ [θ]

 (16)

= min

∑
j∈[k]

min {witj , max {wij : it precedes i in Θ}} : t ∈ [θ]


Now we are ready to introduce our new class of inequalities.

Definition 4. Given a sequence Θ = {i1 → i2 → · · · → iθ}, let LW,Θ be defined as in (16). Then, the aggregated

mixing inequality derived from Θ is defined as the following:

∑
j∈[k]

yj +
∑
s∈[τj ]

(wjsj − wjs+1j)zjs

−min {ε, LW,Θ} ziθ ≥
∑
j∈[k]

max {wij : i ∈ Θ} . (A-Mix)

�

Remark 4. Since min {ε, LW,Θ} ≥ 0, the aggregated mixing inequality (A-Mix) dominates what is obtained

after adding up the mixing inequalities (Mix) for j ∈ [k]. �

Before proving validity of (A-Mix), we present an example illustrating how the aggregated mixing inequalities

are obtained.
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Example 3. We revisit the mixed-integer set in Example 2. Now take a sequence Θ = {2→ 1→ 3}. Then {3}
and {2→ 1→ 3} are the 1-mixing-subsequence and 2-mixing-subsequence of Θ, respectively. Moreover,

LW,Θ = min {(6− (6− 13)+) + (4− (4− 3)+), (8− (8− 13)+) + (3− (3− 2)+), 13 + 2}

= min {6 + 3, 8 + 2, 13 + 2} = 9.

In (14), we have ε = 7. Since ε ≤ LW,Θ, the corresponding (A-Mix) is

(y1 + 13z3) + (y2 + (4− 3)z2 + (3− 2)z1 + 2z3)− 7z3 ≥ 13 + 4,

that is y1 + y2 + z1 + z2 + 8z3 ≥ 17. In Example 2, the other four inequalities with y1 + y2 are also of the

form (A-Mix), and they are derived from the sequences {2→ 3}, {3→ 2}, {3→ 1→ 2}, and {3→ 2→ 1}.
So, in this example, the convex hull of (14) is obtained after applying the mixing inequalities (Mix) and the

aggregated mixing inequalities (A-Mix). �

We will next present the proof of validity of (A-Mix). To this end, the following lemma is useful. As the proof of

this lemma is technical, we defer its proof to the appendix. Lemma 4 will be used again in Section 5.3.

Lemma 4. Let (ȳ, z̄) ∈ Rk+×[0, 1]n be a point satisfying (13a)–(13c). If (ȳ, z̄) satisfies (A-Mix) for all sequences

contained in {i ∈ [n] : z̄i < 1}, then (ȳ, z̄) satisfies (A-Mix) for all the other sequences as well.

Now we are ready to prove the following theorem:

Theorem 4.1. The aggregated mixing inequalities defined as in (A-Mix) are valid forM(W,0, ε) where W ∈
Rn×k+ .

Proof. We will argue that every point inM(W,0, ε) with W ∈ Rn×k+ satisfies (A-Mix) for all sequences in [n].
To this end, take a point (ȳ, z̄) ∈ M(W,0, ε). Then, z̄i ∈ {0, 1}n holds by definition ofM(W,0, ε). If z̄ = 1,

then (ȳ, z̄) satisfies (A-Mix) if and only if
∑
j∈[k] ȳj ≥ min {ε, LW,Θ}. Since

∑
j∈[k] ȳj ≥ ε, it follows that

(ȳ, z̄) satisfies (A-Mix). Thus, we may assume that {i ∈ [n] : z̄i < 1} = {i ∈ [n] : z̄i = 0} is nonempty. By

Lemma 4, it is sufficient to show that (ȳ, z̄) satisfies (A-Mix) for every sequence contained in the nonempty set

{i ∈ [n] : z̄i < 1}. Take a nonempty sequence Θ = {i1 → · · · → iθ} in {i ∈ [n] : z̄i = 0}. By our choice of

Θ, we have z̄iθ = 0, so (ȳ, z̄) satisfies (A-Mix) if and only if

∑
j∈[k]

ȳj +
∑
s∈[τj ]

(wjsj − wjs+1j)z̄js

 ≥ ∑
j∈[k]

wj1j .

This inequality is precisely what is obtained by adding up the mixing inequalities (Mix) for j ∈ [k], and therefore,

(ȳ, z̄) satisfies it, as required.

In Example 3, ε = 7 and LW,{2→1→3} = 9. It can also be readily checked that LW,{2→3} = LW,{3→2} = 8 and

LW,{3→1→2} = LW,{3→2→1} = 9, which means min {ε, LW,Θ} = ε for the sequences corresponding to the five

aggregated mixing inequalities in the convex hull description of (14). In general, the following holds:
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Proposition 4. If ε ≤ LW,Θ, then the aggregated mixing inequality (A-Mix) obtained from Θ dominates the

linking constraint y1 + · · ·+ yk ≥ ε.

Proof. The inequality (A-Mix) is equivalent to

∑
j∈[k]

yj ≥ εziθ +
∑
j∈[k]

wj1j −
∑
s∈[τj ]

(wjsj − wjs+1j)zjs

 .

Since
∑
s∈[τj ](wjsj − wjs+1j) = wj1j , by Lemma 3, we have for all j ∈ [k]

wj1j −
∑
s∈[τj ]

(wjsj − wjs+1j)zjs =
∑
s∈[τj ]

(wjsj − wjs+1j)(1− zjs)

≥ (wjτj j − wjτj+1j)(1− zjτj ) = wiθj(1− ziθ ),

where the inequality follows from the facts that wjsj − wjs+1j ≥ 0 for all js ∈ [τj ] and thus each summand is

nonnegative, and the last equation follows from jτj = iθ and by our convention that wjτj+1 = 0. Therefore, the

following inequality is a consequence of (A-Mix):

∑
j∈[k]

yj ≥
∑
j∈[k]

wiθj +

ε−∑
j∈[k]

wiθj

 ziθ .

Since 0 ≤ ziθ ≤ 1, its right-hand side is always greater than or equal to min
{∑

j∈[k] wiθj , ε
}

. Since

max {wij : iθ precedes i in Θ} = 0, it follows from the definition of LW,Θ in (16) that
∑
j∈[k] wiθj ≥ LW,θ.

Then, by our assumption thatLW,Θ ≥ ε, we have min
{∑

j∈[k] wiθj , ε
}

= ε, implying in turn that y1+· · ·+yk ≥
ε is implied by (A-Mix), as required.

We next demonstrate that when ε is large, applying the aggregated mixing inequalities is not always enough to

describe the convex hull ofM(W,0, ε) via an example.

Example 4. The following set is the same as (14) in Examples 2 and 3 except that ε = 9.
(y, z) ∈ R2

+ × {0, 1}5 :

y1 + 8z1 ≥ 8
y1 + 6z2 ≥ 6
y1 + 13z3 ≥ 13
y1 + z4 ≥ 1
y1 + 4z5 ≥ 4

,

y2 + 3z1 ≥ 3
y2 + 4z2 ≥ 4
y2 + 2z3 ≥ 2
y2 + 2z4 ≥ 2
y2 + z5 ≥ 1

, y1 + y2 ≥ 9


. (17)

Recall that LW,{2→3} = 8, so ε > LW,{2→3} in this case. The convex hull of (17) is given by
(y, z) ∈ R2

+ × [0, 1]5 :

7y1 + 6y2 +12z2 + 49z3 ≥ 115
6y1 + 5y2 +10z2 + 42z3 + z4 ≥ 98
3y1 + 2y2 +4z2 + 21z3 + z4 + 3z5 ≥ 47
3y1 + 2y2 +4z2 + 21z3 + 4z5 ≥ 47
2y1 + 3y2 +6z2 + 14z3 ≥ 38
y1 + 2y2 +4z2 + 7z3 + z5 ≥ 21
y1 + y2 +z1 + z2 + 6z3 ≥ 17
y1 + y2 +2z1 + z2 + 5z3 ≥ 17

,
the mixing inequalities (Mix)

for j = 1, 2


.
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In this convex hull description, there are still two inequalities with y1+y2, and it turns out that these are aggregated

mixing inequalities. To illustrate, take a sequence Θ = {2→ 1→ 3}. We observed in Example 3 that {3} and

{2 → 1 → 3} are the 1-mixing subsequence and the 2-mixing subsequence of Θ and that LW,Θ = 9. So, the

corresponding aggregated mixing inequality (A-Mix) is y1 + y2 + z1 + z2 + 6z3 ≥ 17. Similarly, we obtain

y1 + y2 + 2z1 + z2 + 5z3 ≥ 17 from {3 → 2 → 1}. However, unlike the system (14) in Example 2, there

are facet-defining inequalities for the convex hull of this set other than the aggregated mixing inequalities, i.e.,

the first 6 inequalities in the above description of the convex hull have different coefficient structures on the y

variables. �

So, a natural question is: When are the mixing inequalities and the aggregated mixing inequalities sufficient to

describe the convex hull ofM(W,0, ε)? Examples 2–4 suggest that whether or not the mixing and the aggregated

mixing inequalities are sufficient depends on the value of ε. In the next section, we find a necessary and sufficient

condition for the sufficiency of the mixing and the aggregated mixing inequalities.

5 Joint mixing sets with lower bounds

In this section, we study the convex hull of M(W,0, ε), where W = {wij} ∈ Rn×k+ and ε ∈ R+. More

specifically, we focus on the question of when the convex hull of this set is obtained after applying the mixing

inequalities and the aggregated mixing inequalities. By Remark 1, we have (y, z) ∈ M(W,0, ε) if and only

if (y,1 − z) ∈ P(W,0, ε). In Section 3, we identified that P(W, `, 0) defined as in (7) has an underlying

submodularity structure (due to Lemma 1 and Proposition 1). In this section, we will first establish that P(W,0, ε)
has a similar submodularity structure for particular values of ε. In fact, for those favorable values of ε, we show

that the mixing and the aggregated mixing inequalities are sufficient to describe the convex hull ofM(W,0, ε) if

and only if P(W,0, ε) has the desired submodularity structure; this is the main result of this section.

5.1 Submodularity in joint mixing sets with lower bounds

In order to make a connection with submodularity, we first define the following functions f1, . . . , fk, g : {0, 1}n →
R: for z ∈ {0, 1}n,

fj(z) := max
i∈[n]
{wijzi} for j ∈ [k] and g(z) := max

ε,∑
j∈[k]

fj(z)

 . (18)

Then, we immediately arrive at the following representation of P(W,0, ε).

Lemma 5. Let f1, . . . , fk, g : {0, 1}n → R be as defined in (18). Then,

P(W,0, ε) =
{

(y, z) ∈ Rk × {0, 1}n : yj ≥ fj(z), ∀j ∈ [k], y1 + · · ·+ yk ≥ g(z)
}
. (19)

Proof. We deduce the equivalence of the relations yj ≥ fj(z) for j ∈ [k] to the first set of constraints in
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P(W,0, ε) from the corresponding definition of this set in (7). Also, we immediately have
∑
j∈[k] yj ≥

max
{
ε,
∑
j∈[k] fj(z)

}
. The result then follows from the definition of the function g.

We would like to understand the convex hull of P(W,0, ε) for W ∈ Rn×k+ and ε ∈ R+ using Lemma 5. Observe

that f1, . . . , fk defined in (18) coincide with the functions f1, . . . , fk defined in (11) for the ` = 0 case. So, the

following is a direct corollary of Lemma 1.

Corollary 3. For any j ∈ [k], the function fj defined as in (18) is submodular and satisfies fj(∅) ≥ 0.

In contrast to the functions f1, . . . , fk, the function g is not always submodular. However, we can characterize

exactly when g is submodular in terms of ε. For this characterization, we need to define several parameters based

on W and ε. For a given ε, let Ī(ε) be the following subset of [n]:

Ī(ε) :=

i ∈ [n] :
∑
j∈[k]

wij ≤ ε

 . (20)

With Ī(ε), we define another parameter LW (ε) ∈ R+ as follows:

LW (ε) :=


min

p,q∈[n]\Ī(ε)

{ ∑
j∈[k]

min {wpj , wqj}
}
, if Ī(ε) 6= [n],

+∞, if Ī(ε) = [n].
(21)

Note that Ī(ε) can be found in O(kn) time and that LW (ε) can be computed in O(kn2) time.

Example 5. In Example 2, we have Ī(ε) = {4, 5} and LW (ε) = w21 + w32 = 8. Moreover, Ī(ε) = {4, 5} in

Example 4 as well, so we still have LW (ε) = 8 in Example 4. �

In Section 4, we introduced the parameter LW,Θ that depends on W and a sequence Θ of indices in [n] to define

the aggregated mixing inequality (A-Mix) derived from Θ. The following lemma illustrates a relationship between

LW (ε) and LW,Θ:

Lemma 6. If Ī(ε) 6= [n], then LW (ε) = min
{
LW,Θ : Θ is a nonempty sequence in [n] \ Ī(ε)

}
.

Proof. Take a nonempty sequence Θ in [n] \ Ī(ε). When Θ = {r} for some r ∈ [n] \ Ī(ε), LW,Θ =
∑
j∈[k] wrj ,

so LW (ε) ≤ LW,Θ in this case. When Θ = {i1 → · · · → iθ} with θ ≥ 2, for any s ∈ [θ] we have

min {wisj , max {wij : is precedes i in Θ}} ≥ min
{
wisj , wis+1j

}
where wiθ+1j is set to 0 for convention. Then it follows from the definition of LW,Θ in (16) that LW,Θ ≥
min

{∑
j∈[k] min

{
wisj , wis+1j

}
: s ∈ [θ]

}
. Consequently, from the definition of LW (ε), we deduce that

LW (ε) ≤ LW,Θ. In both cases, we get LW (ε) ≤ LW,Θ.

Now it remains to show LW (ε) ≥ min
{
LW,Θ : Θ is a nonempty sequence in [n] \ Ī(ε)

}
. Since Ī(ε) 6= [n],

either there exist distinct p, q ∈ [n] \ Ī(ε) such that LW (ε) =
∑
j∈[k] min {wpj , wqj} = LW,{p→q} or there
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exists r ∈ [n] \ Ī(ε) such that LW (ε) =
∑
j∈[k] wrj = LW,{r}, implying in turn that LW (ε) ≥ LW,Θ for some

nonempty sequence Θ in [n] \ Ī(ε), as required.

Our last concept for understanding submodularity of g is the notion of ε-negligibility.

Definition 5. We say that Ī(ε) is ε-negligible if either

• Ī(ε) = ∅ or

• Ī(ε) 6= ∅ and Ī(ε) satisfies both of the following two conditions:

max
i∈Ī(ε)

{wij} ≤ wij for every i ∈ [n] \ Ī(ε) and j ∈ [k], (C1)∑
j∈[k]

max
i∈Ī(ε)

{wij} ≤ ε. (C2)

�

Example 6. In both Examples 2 and 4, we have seen that Ī(ε) = {4, 5}. Moreover, it can be readily checked that

Ī(ε) is ε-negligible in both examples. �

Let us consider examples where Ī(ε) is not ε-negligible.

Example 7. Let us consider Examples 2 with a slight modification. The following set is the same as (14) except

that w42 is now 3.
(y, z) ∈ R2

+ × {0, 1}5 :

y1 + 8z1 ≥ 8
y1 + 6z2 ≥ 6
y1 + 13z3 ≥ 13
y1 + z4 ≥ 1
y1 + 4z5 ≥ 4

,

y2 + 3z1 ≥ 3
y2 + 4z2 ≥ 4
y2 + 2z3 ≥ 2
y2 + 3z4 ≥ 3
y2 + z5 ≥ 1

, y1 + y2 ≥ 7


. (22)

In this example, Ī(ε) is still {4, 5}. But, Ī(ε) is no longer ε-negligible because 3 /∈ Ī(ε) yet w42 > w32 implying

that condition (C1) is violated. The following set is the same as (14) except that w51 is now 6.
(y, z) ∈ R2

+ × {0, 1}5 :

y1 + 8z1 ≥ 8
y1 + 6z2 ≥ 6
y1 + 13z3 ≥ 13
y1 + z4 ≥ 1

y1 + 6z5 ≥ 6

,

y2 + 3z1 ≥ 3
y2 + 4z2 ≥ 4
y2 + 2z3 ≥ 2
y2 + 2z4 ≥ 2
y2 + z5 ≥ 1

, y1 + y2 ≥ 7


. (23)

Again, Ī(ε) is {4, 5}. However, Ī(ε) is not ε-negligible because
∑
j∈[k] max

i∈Ī(ε)
{wij} = 6 + 2 > ε implying that

condition (C2) is violated. One can check that there are facet-defining inequalities other than the mixing and the

aggregated mixing inequalities in both of these examples. For instance, 2y1 + 3y2 + 3z2 + 18z3 + 3z4 ≥ 38 is

facet-defining for the convex hull of (22) and 2y1 + y2 + z1 + z2 + 14z3 + z4 + 6z5 ≥ 30 is facet-defining for

the convex hull of (23). �
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The ε-negligibility property of a set Ī(ε) is closely connected to a favorable property of the g function defined in

(18).

Lemma 7. Let g be as defined in (18). If Ī(ε) is ε-negligible, then g(U) = g(U \ Ī(ε)) for every U ⊆ [n].

Proof. Suppose Ī(ε) is nonempty and satisfies conditions (C1) and (C2). Take a subset U of [n]. If U ⊆ Ī(ε),

then g(U) ≤ g(Ī(ε)) because g is a monotone function. Since
∑
j∈[k] max

i∈Ī(ε)
{wij} ≤ ε, we obtain g(Ī(ε)) = ε by

definition of g in (18). So, g(U) = g(∅) = ε in this case. If U \ Ī(ε) 6= ∅, then
∑
j∈[k] wpj > ε for some p ∈ U ,

implying in turn that
∑
j∈[k] maxi∈U {wij} > ε. Moreover, as Ī(ε) satisfies (C1),

∑
j∈[k] maxi∈U {wij} =∑

j∈[k] maxi∈U\Ī(ε) {wij}, and therefore, g(U) = g(U \ Ī(ε)), as required.

We will next establish that whether the function g is submodular or not is determined entirely by Ī(ε) and LW (ε)
defined as in (20) and (21).

Lemma 8. The function g defined as in (18) is submodular if and only if Ī(ε) is ε-negligible and ε ≤ LW (ε).

Proof. (⇒): Assume that g is submodular. Suppose for a contradiction that Ī(ε) is not ε-negligible. Then

Ī(ε) is nonempty, and (C1) or (C2) is violated. Assume that Ī(ε) does not satisfy (C1). Then wqj > wpj for

some j ∈ [k], p ∈ [n] \ Ī(ε) and q ∈ Ī(ε). By our choice of q, we have g({q}) = ε. Moreover, wqj > wpj

implies that g({p, q}) =
∑
j∈[k] max{wpj , wqj} >

∑
j∈[k] wpj = g({p}). Since g(∅) = ε, it follows that

g({p}) + g({q}) < g(∅) + g({p, q}), a contradiction to the submodularity of g. Thus, we may assume that Ī(ε)
does not satisfy (C2). Then

∑
j∈[k] max

i∈Ī(ε)
{wij} > ε, so g(Ī(ε)) =

∑
j∈[k] max

i∈Ī(ε)
{wij}. Now take a minimal

subset I of Ī(ε) with g(I) > ε. Since I ⊆ Ī(ε) and g(I) > ε, we know that |I| ≥ 2. That means that one can

find two nonempty subsets U, V of I partitioning I . By our minimal choice of I , we have g(U) = g(V ) = ε, but

this indicates that g(U) + g(V ) < g(∅) + g(I) = g(U ∩ V ) + g(U ∪ V ), a contradiction to the submodularity of

g. Therefore, Ī(ε) is ε-negligible.

Lastly, suppose for a contradiction that ε > LW (ε). Then, LW (ε) 6= ∞, implying Ī(ε) 6= [n] and ε >∑
j∈[k] min {wpj , wqj} for some p, q ∈ [n] \ Ī(ε). Moreover, because both

∑
j∈[k] wpj and

∑
j∈[k] wqj are

greater than ε, we deduce that p and q are distinct. Then,

g ({p}) + g ({q}) =
∑
j∈[k]

wpj +
∑
j∈[k]

wqj =
∑
j∈[k]

max {wpj , wqj}+
∑
j∈[k]

min {wpj , wqj}

= g ({p, q}) +
∑
j∈[k]

min {wpj , wqj} < g ({p, q}) + g (∅) ,

where the strict inequality follows from g(∅) = ε. This is a contradiction to the assumption that g is submodular.

Hence, ε ≤ LW (ε), as required.

(⇐): Assume that Ī(ε) is ε-negligible and ε ≤ LW (ε). We will show that g(U)+g(V ) ≥ g(U∪V )+g(U∩V ) for

every two sets U, V ⊆ [n]. If Ī(ε) = [n], then we have g(U) = ε for every subset U of [n] due to (C2). Thus, we
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may assume that Ī(ε) 6= [n]. By Lemma 7, for every two subsetsU, V ⊆ [n], g(U)+g(V ) ≥ g(U∪V )+g(U∩V )
holds if and only if g (U ′) + g (V ′) ≥ g (U ′ ∪ V ′) + g (U ′ ∩ V ′), where U ′ := U \ Ī(ε) and V ′ := V \ Ī(ε),

holds. This means that it is sufficient to consider subsets of [n] \ Ī(ε). Consider two sets U, V ⊆ [n] \ Ī(ε). If

U = ∅ or V = ∅, the inequality trivially holds due to the monotonicity of g. So, we may assume that U, V 6= ∅.
First, suppose that U ∩ V 6= ∅. Because U, V ⊆ [n] \ Ī(ε), we deduce that g(X) =

∑
j∈[k] fj(X) for any

X ∈ {U, V, U ∪V,U ∩V }. Then, Corollary 3 implies that g(U)+g(V ) ≥ g(U ∪V )+g(U ∩V ). Now, consider

the case of U ∩ V = ∅. Note that for each j ∈ [k], the definition of fj(V ) = maxi∈V {wij} implies that

fj(U)+fj(V )−fj(U ∪V ) = max{fj(U), fj(V )}+min{fj(U), fj(V )}−fj(U ∪V ) = min{fj(U), fj(V )}.

Hence, we have

g(U) + g(V )− g(U ∪ V ) =
∑
j∈[k]

(fj(U) + fj(V )− fj(U ∪ V )) =
∑
j∈[k]

min{fj(U), fj(V )}.

So, it suffices to argue that
∑
j∈[k] min{fj(U), fj(V )} ≥ g(∅) = ε. Since U, V 6= ∅ and U ∩ V = ∅, there exist

distinct p, q ∈ [n]\ Ī(ε) such that p ∈ U and q ∈ V . Then fj(U) ≥ fj({p}) = wpj and fj(V ) ≥ fj({q}) = wqj ,

implying in turn that ∑
j∈[k]

min{fj(U), fj(V )} ≥
∑
j∈[k]

min{wpj , wqj} ≥ LW (ε),

where the last inequality follows from the definition of LW (ε) in (21). Finally, our assumption that ε ≤ LW (ε)
implies that

∑
j∈[k] min{fj(U), fj(V )} ≥ ε as desired.

Therefore, Lemma 8, along with Corollary 3, establish that f1, . . . , fk and g are submodular when Ī(ε) is

ε-negligible and ε ≤ LW (ε).

5.2 Polymatroid inequalities and aggregated mixing inequalities

Consider P(W,0, ε) with W ∈ Rn×k+ and ε ∈ R+. Then, from Lemma 5 we deduce that

conv(P(W,0, ε)) ⊆
{

(y, z) ∈ Rk × [0, 1]n : (yj , z) ∈ conv(Qfj ), ∀j ∈ [k], (y1 + · · ·+ yk, z) ∈ conv(Qg)
}
,

where fj , g are as defined in (18). In this section we will prove that in fact equality holds in the above relation when

g is submodular, i.e., by Lemma 8, when Ī(ε) is ε-negligible and ε ≤ LW (ε). Then, consequently, if Ī(ε) is ε-

negligible and ε ≤ LW (ε), then the separation problem over conv(P(W,0, ε)) (equivalently, conv(M(W,0, ε)))

can be solved inO(kn logn) time by a simple greedy algorithm. To this end, we first characterize the V-polyhedral,

or inner, description of conv(P(W,0, ε)). For notational purposes, we define a specific set of binary solutions as

follows:

S(ε) :=

z ∈ {0, 1}n :
∑
j∈[k]

max
i∈[n]
{wijzi} > ε

 . (24)
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Lemma 9. The extreme rays of conv(P(W,0, ε)) are (ej ,0) for j ∈ [k], and the extreme points are precisely

the following:

• A(z) = (yz, z) for z ∈ S(ε) where yzj = max
i∈[n]
{wijzi} for j ∈ [k],

• B(z, d) = (yz,d, z) for z ∈ {0, 1}n \ S(ε) and d ∈ [k] where

yz,dj =


max
i∈[n]
{wijzi} , if j 6= d,

max
i∈[n]
{widzi}+

(
ε−

∑
j∈[k] max

i∈[n]
{wijzi}

)
, if j = d.

Proof. It is clear that (ej ,0) for j ∈ [k] are the extreme rays of conv(P(W,0, ε)). Let (ȳ, z̄) be an extreme point

of conv(P(W,0, ε)). Then z̄ ∈ {0, 1}n, and constraints (8) become ȳj ≥ max
i∈[n]
{wij z̄i} for j ∈ [k]. If z̄ ∈ S(ε),

then
∑
j∈[k] max

i∈[n]
{wij z̄i} > ε, so (ȳ, z̄) automatically satisfies (9)–(10). As (ȳ, z̄) is an extreme point, it follows

that ȳj = max
i∈[n]
{wij z̄i} for j ∈ [k], and therefore, (ȳ, z̄) = A(z̄). If z̄ /∈ S(ε), then

∑
j∈[k] max

i∈[n]
{wij z̄i} ≤ ε.

Since (ȳ, z̄) satisfies ȳ1 + · · ·+ ȳk ≥ ε and (ȳ, z̄) cannot be expressed as a convex combination of two distinct

points, it follows that ȳ1 + · · ·+ ȳk ≥ ε and constraints ȳj ≥ max
i∈[n]
{wij z̄i} , j ∈ [k] \ {d} are tight at (ȳ, z̄) for

some d ∈ [k], so (ȳ, z̄) = B(z, d).

Based on the definition of S(ε) and (18), we have

g(z) = max

ε,∑
j∈[k]

fj(z)

 =


∑
j∈[k] fj(z), if z ∈ S(ε)

ε, if z 6∈ S(ε).

Remember the definition of Ī(ε) in (20) and the conditions for Ī(ε) to be ε-negligible. Recall the definition

of LW (ε) in (21) as well. Based on these definitions and Proposition 2, we are now ready to give the explicit

inequality characterization of the convex hull ofM(W,0, ε).

Proposition 5. Let W = {wij} ∈ Rn×k+ and ε ∈ R+. If Ī(ε) is ε-negligible and ε ≤ LW (ε), then the convex

hull ofM(W,0, ε) is given by{
(y, z) ∈ Rk × [0, 1]n : (yj ,1− z) ∈ conv(Qfj ), ∀j ∈ [k], (y1 + · · ·+ yk,1− z) ∈ conv(Qg)

}
.

Proof. We will show that y1, . . . , yk and
∑
j∈[k] yj are weakly independent with respect to submodular functions

f1, . . . , fk and g (recall Definition 1). Consider α ∈ Rk+ \ {0}, and let αmin denote the smallest coordinate value

of α. Then α and α>y can be written as α = αmin1 +
∑
j∈[k](αj − αmin)ej and α>y = αmin

∑
j∈[k] yj +∑

j∈[k](αj − αmin)yj . Let fα be defined as fα(z) := min
{
α>y : (y, z) ∈ P(W,0, ε)

}
for z ∈ {0, 1}n. Then,

it is sufficient to show that fα = αming +
∑
j∈[k](αj − αmin)fj .

Let z̄ ∈ {0, 1}n. For any y with (y, z̄) ∈ P(W,0, ε), we have yj ≥ fj(z̄) for j ∈ [k] and
∑
j∈[k] yj ≥ g(z̄) by

Lemma 5, implying in turn that

fα(z̄) = min
{
α>y : (y, z̄) ∈ P(W,0, ε)

}
≥ αming(z̄) +

∑
j∈[k]

(αj − αmin)fj(z̄). (25)
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Recall the definition of S(ε) in (24). If z̄ ∈ S(ε), then g(z̄) =
∑
j∈[k] fj(z̄), and therefore, A(z̄) = (yz̄, z̄)

defined in Lemma 9 satisfies (25) at equality. If z̄ /∈ S(ε), then g(z̄) = ε. Let d ∈ [k] be the index satisfying

αd = αmin. Then B(z̄, d) = (yz̄,d, z̄) defined in Lemma 9 satisfies (25) at equality. Therefore, we deduce that

fα = αming +
∑
j∈[k](αj − αmin)fj .

From Proposition 2 applied to (19), we obtain that conv(P(W,0, ε)) is equal to{
(y, z) ∈ Rk × [0, 1]n : (yj , z) ∈ conv(Qfj ), ∀j ∈ [k], (y1 + · · ·+ yk, z) ∈ conv(Qg)

}
.

After complementing the z variables, we obtain the desired description of conv(M(W,0, ε)). This finishes the

proof.

Proposition 5 indicates that if Ī(ε) is ε-negligible and ε ≤ LW (ε), then the convex hull of M(W,0, ε) is

described by the polymatroid inequalities of fj with left-hand side yj for j ∈ [k] and the polymatroid inequalities

of g with left-hand side
∑
j∈[k] yj . We have seen in Section 3 that the polymatroid inequalities of fj with left-hand

side yj for j ∈ [k] are nothing but the mixing inequalities. In fact, it turns out that an extremal polymatroid

inequality of g with left-hand side
∑
j∈[k] yj is either the linking constraint y1 + · · ·+ yk ≥ ε or an aggregated

mixing inequality, depending on whether or not Ī(ε) = [n]. We consider the Ī(ε) = [n] case first.

Proposition 6. Assume that Ī(ε) = [n] and Ī(ε) is ε-negligible. Then for every extreme point π of EPg̃, the

corresponding polymatroid inequality
∑
j∈[k] yj +

∑
i∈[n] πizi ≥ ε +

∑
i∈[n] πi is equivalent to the linking

constraint.

Proof. By Theorem 2.2, there exists a permutation σ of [n] such that πσ(t) = g(Vt) − g(Vt−1) where Vt =
{σ(1), . . . , σ(t)} for t ∈ [n] and V0 = ∅. Since Ī(ε) = [n] and Ī(ε) is ε-negligible, it follows that g(U) = ε for

every U ⊆ [n], so πσ(t) = 0 for all t. Therefore,
∑
j∈[k] yj +

∑
i∈[n] πizi ≥ ε+

∑
i∈[n] πi equals

∑
j∈[k] yj ≥ ε,

as required.

The Ī(ε) 6= [n] case is more interesting; the following proposition is similar to Proposition 3:

Proposition 7. Assume that Ī(ε) 6= [n] is ε-negligible and ε ≤ LW (ε). Then for every extreme point π of EPg̃,

there exists a sequence Θ = {i1 → · · · → iθ} contained in [n] \ Ī(ε) that satisfies the following:

(1) the j-mixing-subsequence {j1 → · · · → jτj} of Θ satisfies wj1j = max {wij : i ∈ [n]} for each j ∈ [k],

(2) the corresponding polymatroid inequality
∑
j∈[k] yj +

∑
i∈[n] πizi ≥ ε +

∑
i∈[n] πi is equivalent to the

aggregated mixing inequality (A-Mix) derived from Θ.

In particular, the polymatroid inequality is of the form

∑
j∈[k]

yj +
∑
s∈[τj ]

(wjsj − wjs+1j)zjs

− εziθ ≥ ∑
j∈[k]

max {wij : i ∈ [n]} . (A-Mix∗)
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Proof. By Theorem 2.2, there exists a permutation σ of [n] such that πσ(t) = g(Vt) − g(Vt−1) where Vt =
{σ(1), . . . , σ(t)} for t ∈ [n] and V0 = ∅. By Lemma 7, g(Vt) − g(Vt−1) = g(Vt \ Ī(ε)) − g(Vt−1 \ Ī(ε)), so

πσ(t) is nonzero only if σ(t) 6∈ Ī(ε). This in turn implies that at most |n \ Ī(ε)| coordinates of π are nonzero.

Let {t1, . . . , tθ} be the collection of t’s such that πσ(t) 6= 0. Then 1 ≤ θ ≤ |n \ Ī(ε)|. Without loss of generality,

we may assume that t1 > · · · > tθ. Let i1 = σ(t1), i2 = σ(t2), . . . , iθ = σ(tθ), and Θ denote the sequence

{i1 → · · · → iθ}. We will show that Θ satisfies conditions (1) and (2) of the proposition.

(1): For j ∈ [k], let Θj =
{
j1 → · · · → jτj

}
denote the j-mixing-subsequence of Θ. By definition of the

j-mixing-subsequence of Θ, we have wj1j = max{wij : i ∈ Θ}. By our choice of {t1, . . . , tθ} and assumption

that t1 > · · · > tθ, it follows that g(Vt1) = g([n]), which means that fj(Vt1) = fj([n]) for each j ∈ [k].
Therefore, we deduce that max{wij : i ∈ Θ} = max{wij : i ∈ [n]}, as required.

(2): By convention, we have wiθ+1j = wjτj+1j = 0 for j ∈ [k]. In addition, due to our choice of {t1, . . . , tθ}, we

have g(Vts) > g(Vts−1) = · · · = g(Vts+1) holds for s < θ. Then, we obtain

πis = πσ(ts) = g(Vts)− g(Vts+1) =
∑
j∈[k]

fj(Vts)−
∑
j∈[k]

fj(Vts+1)

=
∑
j∈[k]

fj({iθ, iθ−1, . . . , is})−
∑
j∈[k]

fj({iθ, iθ−1, . . . , is+1}).

We observed before that g(Vts) > g(Vts−1) = · · · = g(Vts+1), so it follows that fj(Vts) ≥ fj(Vts−1) = · · · =
fj(Vts+1), implying in turn that

fj({iθ, iθ−1, . . . , is})− fj({iθ, iθ−1, . . . , is+1}) = (wisj −max {wij : is precedes i in Θ})+ .

This means that for s < θ,

πis =
∑
j∈[k]

(wisj −max {wij : is precedes i in Θ})+ . (26)

Note that

πiθ = πσ(tθ) = g(Vtθ )− g(V0) =
∑
j∈[k]

fj(Vtθ )− ε =
∑
j∈[k]

fj({iθ})− ε.

Since fj({iθ}) = wiθj and max {wij : iθ precedes i in Θ} was set to wjτj+1j = 0, it follows that

πiθ =
∑
j∈[k]

(wiθj −max {wij : iθ precedes i in Θ})+ − ε. (27)

Therefore, by (26) and (27), it follows that the polymatroid inequality
∑
j∈[k] yj +

∑
i∈[n] πizi ≥ ε+

∑
i∈[n] π is

precisely (A-Mix∗). Since ε ≤ LW (ε) by our assumption and LW (ε) ≤ LW,Θ by Lemma 6, min{ε, LW,Θ} = ε,

and thus the inequality (A-Mix∗) is identical to the aggregated mixing inequality (A-Mix) derived from Θ, as

required.

By Propositions 5, 6, and 7, if Ī(ε) is ε-negligible and ε ≤ LW (ε), then the convex hull of M(W,0, ε)
can be described by the mixing and the aggregated mixing inequalities together with the linking constraint
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y1 + · · ·+ yk ≥ ε and the bounds 0 ≤ z ≤ 1. Another implication is that if Ī(ε) is ε-negligible and ε ≤ LW (ε),

then the aggregated mixing inequalities other than the ones of the form (A-Mix∗) are not necessary.

5.3 Necessary conditions for obtaining the convex hull by the mixing and the aggre-
gated mixing inequalities

In Example 4, Ī(ε) is ε-negligible but ε > LW (ε) (see Examples 5 and 6). In Example 7, Ī(ε) is not ε-negligible

in each of the two joint mixing sets with lower bounds. These examples already demonstrate that the mixing

and the aggregated mixing inequalities are not sufficient whenever ε-negligibility condition or the condition

ε ≤ LW (ε) does not hold. In this section, we will formally show in general that Ī(ε) being ε-negligible and

ε ≤ LW (ε) are necessary for the mixing and the aggregated mixing inequalities to be sufficient to describe the

convex hull ofM(W,0, ε). The following is the main result of this section.

Theorem 5.1. Let W = {wij} ∈ Rn×k+ and ε ≥ 0. Let Ī(ε) and LW (ε) be defined as in (20) and (21),

respectively. Then the following statements are equivalent:

(i) Ī(ε) is ε-negligible and ε ≤ LW (ε),

(ii) the convex hull ofM(W,0, ε) can be described by the mixing inequalities (Mix) and the aggregated mixing

inequalities (A-Mix) together with the linking constraint y1 + · · ·+ yk ≥ ε and the bounds 0 ≤ z ≤ 1, and

(iii) the convex hull of M(W,0, ε) can be described by the mixing inequalities of the form (Mix*) and the

aggregated mixing inequalities of the form (A-Mix∗) together with the linking constraint y1 + · · ·+ yk ≥ ε
and the bounds 0 ≤ z ≤ 1.

Proof. Propositions 5, 6 and 7 already prove that (i)⇒(iii), and the direction (iii)⇒(ii) is trivial. Thus, what

remains is to show (ii)⇒(i). We will prove the contrapositive of this direction. It is sufficient to exhibit a point

(ȳ, z̄) with
∑
j∈[k] ȳj ≥ ε and 0 ≤ z̄ ≤ 1 that satisfies the mixing and the aggregated mixing inequalities but is

not contained in the convex hull ofM(W,0, ε).

Assume first that Ī(ε) is not ε-negligible. Then Ī(ε) is nonempty and either (C1) or (C2) is violated. First,

consider the case when (C2) is violated. Take a minimal subset U of Ī(ε) satisfying
∑
j∈[k] max

i∈U
{wij} > ε.

Note that by definition of Ī(ε), we have for every i ∈ Ī(ε) that
∑
j∈[k] wij ≤ ε. Then by the assumption

that
∑
j∈[k] max

i∈U
{wij} > ε, we deduce that |U | ≥ 2. Moreover, by our minimal choice of U , we have∑

j∈[k] max
i∈V
{wij} ≤ ε for any V ⊂ U such that |V | ≤ |U | − 1. Moreover, for each j ∈ [k], the largest element

of {wij : i ∈ U} is contained in |U |−1 subsets of {wij : i ∈ U} of size |U |−1, while the second largest element

of U is the largest in another subset of size |U | − 1. From these observations, we deduce that

(|U | − 1)
∑
j∈[k]

max
i∈U
{wij}+

∑
j∈[k]

second-max{wij : i ∈ U} =
∑
V⊂U

|V |=|U |−1

∑
j∈[k]

max
i∈V
{wij}

 ≤ |U | ε (28)
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where second-max{wij : i ∈ U} denotes the second largest value in {wij : i ∈ U} for j ∈ [k]. Let us consider

(ȳ, z̄) where

z̄i =


1
|U | if i ∈ U

1 if i /∈ U
and ȳj =


|U |−1
|U | max

i∈U
{wij} , if j ∈ [k − 1]

|U |−1
|U | max

i∈U
{wik}+

(
ε− |U |−1

|U |
∑
j∈[k]

max
i∈U
{wij}

)
, if j = k

Then, we always have
∑
j∈[k] ȳj = ε. This, together with (28), implies that

∑
j∈[k]

ȳj = ε ≥ |U | − 1
|U |

∑
j∈[k]

max
i∈U
{wij}+ 1

|U |
∑
j∈[k]

second-max{wij : i ∈ U}. (29)

Then, from W ∈ Rn×k+ we deduce
∑
j∈[k] second-max{wij : i ∈ U} ≥ 0, and hence ȳk ≥ |U |−1

|U | max
i∈U
{wik}.

Let us argue that (ȳ, z̄) satisfies the mixing and the aggregated mixing inequalities. Take a j-mixing-sequence

{j1 → · · · → jτj}. Since
∑
s∈[τj ](wjsj − wjs+1j) = wj1j , (ȳ, z̄) satisfies (Mix) if and only if

ȳj ≥
|U | − 1
|U |

∑
js∈U

(
wjsj − wjs+1j

)
.

As
∑
js∈U

(
wjsj − wjs+1j

)
≤ max

i∈U
{wij}, it follows that (ȳ, z̄) satisfies (Mix). Now we argue that (ȳ, z̄)

satisfies every aggregated mixing inequality. By Lemma 4, it is sufficient to argue this for only the sequences

Θ = {i1 → · · · → iθ} that are contained in U . By (15), (ȳ, z̄) satisfies (A-Mix) for Θ if and only if

∑
j∈[k]

ȳj +
∑
t∈[Θ]

(witj −max {wij : it precedes i in Θ})+ z̄it


−min {ε, LW,Θ} z̄iθ ≥

∑
j∈[k]

max {wij : i ∈ Θ} . (30)

Since Θ ⊆ U , we have z̄i1 = · · · = z̄iθ = 1
|U | . Then, (30) is exactly

∑
j∈[k]

ȳj ≥
|U | − 1
|U |

∑
j∈[k]

max {wij : i ∈ Θ}+ 1
|U |

min {ε, LW,Θ} . (31)

Recall that
∑
j∈[k] ȳj = ε. If |Θ| = 1, then because |U | ≥ 2 we deduce Θ 6= U . Moreover, because |Θ| = 1

and Θ is a proper subset of Ī(ε), we deduce from the definition of Ī(ε) that
∑
j∈[k] max {wij : i ∈ Θ} ≤ ε.

Hence, when |Θ| = 1, we also have min {ε, LW,Θ} ≤ ε, and thus (31) clearly holds. So, we may assume

that |Θ| ≥ 2. By definition of LW,Θ in (16), we have LW,Θ ≤
∑
j∈[k] second-max{wij : i ∈ Θ} where

second-max{wij : i ∈ Θ} denotes the second largest element in {wij : i ∈ Θ}. Since max
i∈Θ
{wij} ≤ max

i∈U
{wij}

and second-max{wij : i ∈ Θ} ≤ second-max{wij : i ∈ U} hold because Θ ⊆ U , we deduce from (29) that (31)

holds. Consequently, Lemma 4 implies that (ȳ, z̄) satisfies the aggregated mixing inequalities (A-Mix) for all

sequences as well. Let us now show that (ȳ, z̄) is not contained in conv(M(W,0, ε)). Observe that (ȳ, z̄) satisfies

the constraints zi ≤ 1 for i /∈ U at equality. For j ∈ [k − 1], let {j1 → · · · → j|U |} be an ordering of the indices

in U such that wj1j ≥ · · · ≥ wj|U|j . Then {j1}, {j1 → j2}, . . . , {j1 → · · · → j|U |} are all j-mixing-sequences,
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and notice that (ȳ, z̄) satisfies the mixing inequalities corresponding to all these j-mixing-sequences at equality.

In particular, it follows that (ȳ, z̄) satisfies zj1 = zj2 = · · · = zj|U| at equality. There are only two points in

{0, 1}n that satisfy both of the constraints zi ≤ 1 for i /∈ U and zj1 = zj2 = · · · = zj|U| at equality; these points

are 1 and 1[n]\U . Let y1, y2 ∈ Rk be such that (y1,1), (y2,1[n]\U ) ∈M(W,0, ε). Then we have∑
j∈[k]

y1
j ≥ ε and

∑
j∈[k]

y2
j ≥

∑
j∈[k]

max
i∈U
{wij}.

As
∑
j∈[k] max

i∈U
{wij} > ε by our assumption and

∑
j∈[k] ȳj = ε, (ȳ, z̄) cannot be a convex combination of

(y1,1) and (y2,1[n]\U ), implying in turn that (ȳ, z̄) does not belong to conv(M(W,0, ε)).

Now consider the case when (C1) is violated. Then there exist p ∈ [n] \ Ī(ε) and q ∈ Ī(ε) such that wqj > wpj

for some j ∈ [k]. In particular,
∑
j∈[k] wpj <

∑
j∈[k] max{wpj , wqj}. Let us consider the point (ȳ, z̄) where

z̄i =


1
2 if i ∈ {p, q}

1 if i /∈ {p, q}
, and

ȳj =


1
2 max {wpj , wqj} , if j ∈ [k − 1]

1
2 max {wpk, wqk}+ 1

2

(
ε+

∑
j∈[k]

wpj −
∑
j∈[k]

max {wpj , wqj}
)
, if j = k

By definition of ȳ, we always have
∑
j∈[k] ȳj = 1

2

(
ε+

∑
j∈[k]

wpj

)
> ε, where the inequality follows from

p /∈ Ī(ε). Moreover, as p ∈ [n] \ Ī(ε) and q ∈ Ī(ε), we have
∑
j∈[k] wpj > ε ≥

∑
j∈[k] wqj , and hence

ε+
∑
j∈[k]

wpj−
∑
j∈[k]

max {wpj , wqj} ≥
∑
j∈[k]

wqj+
∑
j∈[k]

wpj−
∑
j∈[k]

max {wpj , wqj} =
∑
j∈[k]

min {wpj , wqj} ≥ 0,

where the last inequality follows from the fact that wij ≥ 0 for all i ∈ [n] and j ∈ [k]. So, it follows that

ȳk ≥
1
2 max {wpk, wqk} .

As before, we can argue that (ȳ, z̄) satisfies the mixing inequalities. Now we argue that (ȳ, z̄) satisfies every

aggregated mixing inequality. By Lemma 4, it is sufficient to consider only the sequences Θ = {i1 → · · · → iθ}
that are contained in {p, q}. Since Θ ⊆ {p, q}, we know that z̄i1 = · · · = z̄iθ = 1

2 . Then, the following

inequality (32) implies (30).

∑
j∈[k]

ȳj = 1
2

ε+
∑
j∈[k]

wpj

 ≥ 1
2 min {ε, LW,Θ}+ 1

2
∑
j∈[k]

max {wij : i ∈ Θ} . (32)

When Θ contains both p and q, we have LW,Θ =
∑
j∈[k] min{wpj , wqj} ≤

∑
j∈[k] wqj ≤ ε (since q ∈ Ī(ε)) and∑

j∈[k] max {wij : i ∈ Θ} =
∑
j∈[k] max {wpj , wqj}. Then the right-hand side of (32) is

1
2

∑
j∈[k]

min{wpj , wqj}+
∑
j∈[k]

min{wpj , wqj}

 = 1
2
∑
j∈[k]

wpj + 1
2
∑
j∈[k]

wqj ,
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so inequality (32) holds in this case since q ∈ Ī(ε). If Θ = {p} or Θ = {q}, inequality (32) clearly holds.

Consequently, Lemma 4 implies that (ȳ, z̄) satisfies the aggregated mixing inequalities (A-Mix) for all sequences

as well. Suppose for a contradiction that (ȳ, z̄) is a convex combination of two points (y1, z1) and (y2, z2) in

M(W,0, ε). As the previous case, we can argue that z1 and z2 satisfy zp = zq and zi ≤ 1 for i 6∈ {p, q} at

equality, and therefore, z1 = 1 and z2 = 1[n]\{p,q}. Then we have∑
j∈[k]

y1
j ≥ ε,

∑
j∈[k]

y2
j ≥

∑
j∈[k]

max{wpj , wqj} and (ȳ, z̄) = 1
2(y1, z1) + 1

2(y2, z2),

which implies that

1
2

ε+
∑
j∈[k]

wpj

 =
∑
j∈[k]

ȳj = 1
2
∑
j∈[k]

(y1
j + y2

j ) ≥ 1
2ε+ 1

2
∑
j∈[k]

max{wpj , wqj}.

This is a contradiction, because we assumed
∑
j∈[k] wpj <

∑
j∈[k] max{wpj , wqj}. Therefore, (ȳ, z̄) is not

contained in conv(M(W,0, ε)), as required.

In order to finish the proof we consider the case of ε > LW (ε). Based on the previous parts of the proof, we may

assume that Ī(ε) is ε-negligible. Then, LW (ε) is finite, and thus there exist distinct p, q ∈ [n] \ Ī(ε) such that

ε >
∑
j∈[k] min {wpj , wqj} = LW (ε). Let us consider the point (ȳ, z̄) where

z̄i =


1
2 if i ∈ {p, q}

1 if i /∈ {p, q}
and ȳj =


1
2 max {wpj , wqj} if j ∈ [k − 1]
1
2 max {wpk, wqk}+ 1

2LW (ε) if j = k
.

Then ∑
j∈[k]

ȳj =
∑
j∈[k]

1
2 max {wpj , wqj}+ 1

2
∑
j∈[k]

min {wpj , wqj} = 1
2
∑
j∈[k]

wpj + 1
2
∑
j∈[k]

wqj > ε,

where the first equation follows from the properties of LW (ε) in this case, and the inequality follows from our

assumption that p, q ∈ [n] \ Ī(ε). Similar to the previous cases, we can argue that (ȳ, z̄) satisfies the mixing

inequalities. Now we argue that (ȳ, z̄) satisfies every aggregated mixing inequality. By Lemma 4, it is sufficient

to consider only the sequences Θ = {i1 → · · · → iθ} contained in {p, q}. Since Θ ⊆ {p, q}, we know that

z̄i1 = · · · = z̄iθ = 1
2 . Then the following inequality (33) implies (30).∑

j∈[k]

ȳj = 1
2
∑
j∈[k]

wpj + 1
2
∑
j∈[k]

wqj ≥
1
2 min {ε, LW,Θ}+ 1

2
∑
j∈[k]

max {wij : i ∈ Θ} . (33)

When Θ contains both p and q, we have

LW,Θ =
∑
j∈[k]

min{wpj , wqj} and
∑
j∈[k]

max {wij : i ∈ Θ} =
∑
j∈[k]

max {wpj , wqj} .

Therefore, (33) holds in this case. (33) clearly holds if Θ = {p} or Θ = {q}, because ε is smaller than∑
j∈[k] wpj and

∑
j∈[k] wqj (this follows from p, q /∈ Ī(ε)). Consequently, Lemma 4 implies that (ȳ, z̄) satisfies
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the aggregated mixing inequalities (A-Mix) for all sequences as well. Suppose for a contradiction that (ȳ, z̄)
is a convex combination of two points (y1, z1) and (y2, z2) inM(W,0, ε). As in the previous cases, we can

argue that z1 and z2 satisfy the constraints zi ≤ 1 for i 6∈ {p, q} and zp = zq at equality. Therefore, z1 = 1 and

z2 = 1[n]\{p,q}. Then we have∑
j∈[k]

y1
j ≥ ε,

∑
j∈[k]

y2
j ≥

∑
j∈[k]

max{wpj , wqj} and (ȳ, z̄) = 1
2(y1, z1) + 1

2(y2, z2),

which implies that∑
j∈[k]

1
2 max {wpj , wqj}+

1
2
∑
j∈[k]

min {wpj , wqj} =
∑
j∈[k]

ȳj = 1
2
∑
j∈[k]

(y1
j+y2

j ) ≥ 1
2ε+

1
2
∑
j∈[k]

max{wpj , wqj}.

This is a contradiction to our assumption that ε >
∑
j∈[k] min {wpj , wqj}. Therefore, (ȳ, z̄) is not contained in

conv(M(W,0, ε)), as required.

6 Two-sided chance-constrained programs

Liu et al. [19] considered the mixed-integer set defined by

yp + yd + wizi ≥ wi, ∀i ∈ [n], (34a)

yp − yd + (vi + ud)zi ≥ vi, ∀i ∈ [n], (34b)

ud ≥ yd ≥ 0, (34c)

yp ≥ 0, (34d)

z ∈ {0, 1}n, (34e)

where ud is a positive constant satisfying ud ≥ max {wi : i ∈ [n]}, wi ≥ vi ≥ 0 for i ∈ [n]. After setting

yp + yd = y1 and yp − yd + ud = y2, the set (34) is equivalent to the following system:

y1 + wizi ≥ wi, ∀i ∈ [n], (35a)

y2 + (vi + ud)zi ≥ (vi + ud), ∀i ∈ [n], (35b)

ud ≥ y1 − y2 ≥ −ud, (35c)

y1 + y2 ≥ ud, (35d)

z ∈ {0, 1}n. (35e)

Note that the set defined by (35a), (35b), (35d), and (35e) is a joint mixing set with lower bounds of the form

M(W,0, ud) with k = 2. Moreover,

wi + (vi + ud) ≥ ud for all i ∈ [n] and min {wi : i ∈ [n]}+ min {vi + ud : i ∈ [n]} ≥ ud,

implying in turn that the convex hull of the joint mixing set with lower bounds can be obtained after applying the

mixing and the aggregated mixing inequalities by Theorem 5.1.
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In particular, given a sequence {i1 → · · · → iθ} of indices in [n], the corresponding aggregated mixing

inequality (A-Mix) is of the following form:

y1 + y2 +
∑
s∈[τR]

(wrs − wrs+1)zrs +
∑
s∈[τG]

(vgs − vgs+1)zgs − udziθ ≥ wr1 + (vg1 + ud), (36)

where {r1 → · · · → rτR} and {g1 → · · · → gτG} are the 1-mixing-subsequence and the 2-mixing-subsequence

of Θ, respectively, and wrτR+1 := 0, vgτG+1 := −ud. By Lemma 3, we know that zgτG = ziθ , so (vgτG −
vgτG+1)zgτG − udziθ = vgτG zgτG . Since y1 + y2 = 2yp + ud, (36) is equivalent to the following inequality:

2yp +
∑
s∈[τR]

(wrs − wrs+1)zrs +
∑
s∈[τG]

(vgs − vgs+1)zgs ≥ wr1 + vg1 , (37)

where wrτR+1 := 0 as before but vgτG+1 is now set to 0.

In [19], the inequality (37) is called the generalized mixing inequality from Θ, so the aggregated mixing inequalities

generalize the generalized mixing inequalities to arbitrary k. Furthermore, Theorem 5.1 can be extended slightly

to recover the following main result of [19]:

Theorem 6.1 ([19], Theorem 3.1). Let P be the mixed-integer set defined by (35a)–(35e). Then the convex hull

of P can be described by the mixing inequalities for y1, y2, the aggregated mixing inequalities of the form (36)

together with (35c) and the bounds 0 ≤ z ≤ 1 under the assumption that wi ≥ vi ≥ 0 for i ∈ [n] and

ud ≥ max {wi : i ∈ [n]}.

Proof. Let R be the mixed-integer set defined by (35a), (35b), (35d), and (35e). Then P ⊆ R and, by Theo-

rem 5.1, conv(R) is described by the mixing inequalities for y1, y2 and the generalized mixing inequalities of the

form (36) together with 0 ≤ z ≤ 1. We will argue that adding constraint (35c), that is ud ≥ y1 − y2 ≥ −ud, to

the description of conv(R) does not affect integrality of the resulting system.

By Lemma 9, the extreme rays of conv(R) are (ej ,0) for j ∈ [k], and the extreme points are

• A(z) = (y1, y2, z) for z ∈ {0, 1}n \ {1} where

y1 = max
i∈[n]
{wi(1− zi)} and y2 = max

i∈[n]
{(vi + ud)(1− zi)} ,

• B(1) = (ud, 0,1) and B(2) = (0, ud,1).

It follows from the assumption that wi ≥ vi ≥ 0 for i ∈ [n] and ud ≥ max {wi : i ∈ [n]} that all extreme

points of conv(R) satisfy ud ≥ y1 − y2 ≥ −ud. Observe that two hyperplanes {(y, z) : ud = y1 − y2} and

{(y, z) : y1 − y2 = −ud} are parallel. So, each of the new extreme points created after adding ud ≥ y1 − y2 ≥
−ud is obtained as the intersection of one of the two hyperplanes and a ray emanating from an extreme point of

conv(R). Since every extreme ray of conv(R) has 0 in its z component and every extreme point of conv(R) has

integral z component, the z component of every new extreme point is also integral, as required.
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Therefore, the convex hull of P is equal to {(y, z) ∈ conv(R) : (y, z) satisfies (35c)}, implying in turn that

conv(P) can be described by the mixing inequalities for y1, y2, the aggregated mixing inequalities of the

form (36) together with (35c) and the bounds 0 ≤ z ≤ 1, as required.
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A Proof of Lemma 4

Let (ȳ, z̄) ∈ Rk+ × [0, 1]n be a point satisfying (13a)–(13c), and assume that (ȳ, z̄) satisfies (A-Mix) for all

sequences contained in {i ∈ [n] : z̄i < 1}. Then we need to prove that (ȳ, z̄) satisfies (A-Mix) for all the other

sequences as well.

For a sequence Θ, we denote by N(Θ) the set {i ∈ Θ : z̄i = 1}. We argue by induction on |N(Θ)| that (ȳ, z̄)
satisfies (A-Mix) for Θ. If |N(Θ)| = 0, then (ȳ, z̄) satisfies (A-Mix) by the assumption. For the induction step,

we assume that (ȳ, z̄) satisfies (A-Mix) for every sequence Θ with |N(Θ)| < N for some N ≥ 1. Now we take

a sequence Θ = {i1 → · · · → iθ} with |N(Θ)| = N . Notice that (ȳ, z̄) satisfies (A-Mix) if and only if (ȳ, z̄)
satisfies

∑
j∈[k]

ȳj +
∑
t∈[θ]

(witj −max {wij : it precedes i in Θ})+ z̄it


−min {ε, LW,Θ} z̄iθ ≥

∑
j∈[k]

max {wij : i ∈ Θ} . (38)

Hence, it is sufficient to show that (ȳ, z̄) satisfies (38). We consider two cases z̄iθ = 1 and z̄iθ 6= 1 separately.

First, consider the case when z̄iθ 6= 1. Since |N(Θ)| ≥ 1, we have z̄ip = 1 for some p ∈ [θ − 1]. Let Θ′ denote

the subsequence of Θ obtained by removing ip. Then |N(Θ′)| = |N(Θ)| − 1, so it follows from the induction

hypothesis that (A-Mix) for Θ′ is valid for (ȳ, z̄):

∑
j∈[k]

ȳj +
∑

t∈[θ]\{p}

(witj −max {wij : it precedes i in Θ′})+ z̄it


−min {ε, LW,Θ′} z̄iθ ≥

∑
j∈[k]

max {wij : i ∈ Θ′} . (39)

Since Θ′ is a subsequence of Θ, it follows that for any t 6= p.

(witj −max {wij : it precedes i in Θ′})+ ≥ (witj −max {wij : it precedes i in Θ})+ . (40)

Since −z̄it ≥ −1 is valid for each t, we deduce the following inequality from (39):

∑
j∈[k]

ȳj +
∑

t∈[θ]\{p}

(witj −max {wij : it precedes i in Θ})+ z̄it

−min {ε, LW,Θ′} z̄iθ

≥
∑
j∈[k]

max {wij : i ∈ Θ} −
∑
j∈[k]

(
wipj −max {wij : ip precedes i in Θ}

)
+ , (41)

because ∑
t∈[θ]\{p}

(witj −max {wij : it precedes i in Θ′})+ =
∑
j∈[k]

max {wij : i ∈ Θ′}

and ∑
t∈[θ]

(witj −max {wij : it precedes i in Θ})+ =
∑
j∈[k]

max {wij : i ∈ Θ} . (42)
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Moreover, notice that LW,Θ′ ≥ LW,Θ due to (40). So, it follows that (41) implies (38) since z̄ip = 1. This in turn

implies that (ȳ, z̄) satisfies (A-Mix) for Θ, as required.

Next we consider the z̄iθ = 1 case. In this case, (38) is equivalent to

∑
j∈[k]

ȳj +
∑

t∈[θ−1]

(witj −max {wij : it precedes i in Θ})+ z̄it


≥ min {ε, LW,Θ} −

∑
j∈[k]

wiθj +
∑
j∈[k]

max {wij : i ∈ Θ} . (43)

Take the subsequence Θ′ of Θ obtained by removing iθ. As before, we have |N(Θ′)| = |N(Θ)| − 1, and the

induction hypothesis implies that (A-Mix) for Θ′ is valid for (ȳ, z̄):

∑
j∈[k]

ȳj +
∑

t∈[θ−2]

(witj −max {wij : it precedes i in Θ′})+ z̄it


+

∑
j∈[k]

wiθ−1j −min {ε, LW,Θ′}

 z̄iθ−1 ≥
∑
j∈[k]

max {wij : i ∈ Θ′} . (44)

We will deduce from (44) that (43) is valid for (ȳ, z̄). As Θ′ is a subsequence of Θ, (40) holds for t ∈ [θ− 2]. So,

as (ȳ, z̄) satisfies −z̄it ≥ −1 for t ∈ [θ − 2], we obtain the following from (44):

∑
j∈[k]

ȳj +
∑

t∈[θ−2]

(witj −max {wij : it precedes i in Θ})+ z̄it

+

∑
j∈[k]

wiθ−1j −min {ε, LW,Θ′}

 z̄iθ−1

≥
∑
j∈[k]

min
{
wiθ−1j , wiθj

}
−
∑
j∈[k]

wiθj +
∑
j∈[k]

max {wij : i ∈ Θ} , (45)

because (42) holds,∑
t∈[θ−1]

(witj −max {wij : it precedes i in Θ′})+ =
∑
j∈[k]

max {wij : i ∈ Θ′} ,

and ∑
j∈[k]

wiθ−1j −
∑
j∈[k]

(
wiθ−1j −max {wij : iθ−1 precedes i in Θ}

)
+ =

∑
j∈[k]

min
{
wiθ−1j , wiθj

}
. (46)

Now let us compare the coefficient of z̄iθ−1 in (45) and that of z̄iθ−1 in (43). If the coefficient in (45) is less than

the coefficient in (43), then (45) implies that (43) is valid, because we can add an appropriate scalar multiple

of z̄iθ−1 ≥ 0 to (45) in order to achieve the coefficient in (43) and the term
∑
j∈[k] min

{
wiθ−1j , wiθj

}
in the

right-hand side of (45) is at least LW,Θ. If not, then by adding an appropriate scalar multiple of −z̄iθ−1 ≥ −1
to (45), we deduce the following inequality:

∑
j∈[k]

ȳj +
∑

t∈[θ−1]

(witj −max {wij : it precedes i in Θ})+ z̄it


≥ min {ε, LW,Θ′} −

∑
j∈[k]

wiθj +
∑
j∈[k]

max {wij : i ∈ Θ} , (47)
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because (46) holds. Since Θ′ is a subsequence of Θ, we have LW,Θ′ ≥ LW,Θ, so it follows that the term

min {ε, LW,Θ′} in the right-hand side of (47) is at least min {ε, LW,Θ}. Therefore, (47) implies that (43) is

valid for (ȳ, z̄). In summary, when z̄iθ = 1, (ȳ, z̄) satisfies (43), thereby proving that (ȳ, z̄) satisfies (A-Mix).

This finishes the proof of this lemma.
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