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Abstract

Split cuts are prominent general-purpose cutting planes in integer programming. The split closure of a

rational polyhedron is what is obtained after intersecting the half-spaces defined by all the split cuts for the

polyhedron. In this paper, we prove that deciding whether the split closure of a rational polytope is empty

is NP-hard, even when the polytope is contained in the unit hypercube. As a direct corollary, we prove that

optimization and separation over the split closure of a rational polytope in the unit hypercube are NP-hard,

extending an earlier result of Caprara and Letchford.
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1 Introduction

Consider a mixed integer linear program (MILP) defined over a rational polyhedron

P = {(x, y) ∈ Rn × Rp : Ax+Gy ≤ b},

where we denote by x and y the vectors of n integer and p continuous variables, respectively. The objective

is to optimize a linear function over P ∩ (Zn × Rp). Let PI denote the integer hull of P , namely PI :=

conv(P ∩ (Zn × Rp)), the convex hull of the points in P ∩ (Zn × Rp). Starting with Chvátal-Gomroy cuts

proposed by Chvátal [6] and Gomory [18], general-purpose cutting-planes were developed for solving integer

programming problems. In particular, Cook, Kannan, and Schrijver [8] studied the split cuts or split inequalities.

These cuts are a special case of Balas’ disjunctive cuts [3] which can be obtained from a split disjunction. Given

(π, π0) ∈ Zn × Z, any point (x, y) in Zn ×Rp satisfies either πx ≤ π0 or πx ≥ π0 + 1. An inequality is a split

cut if it is valid for both

Π1 := P ∩ {(x, y) ∈ Rn × Rp : πx ≤ π0} and

Π2 := P ∩ {(x, y) ∈ Rn × Rp : πx ≥ π0 + 1}
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for some (π, π0) ∈ Zn×Z. We call the set S(π, π0) := {(x, y) ∈ Rn×Rp : πx ≤ π0 or πx ≥ π0 +1} the split

or the split disjunction derived from (π, π0) ∈ Zn×Z. Clearly, PI ⊆ conv(P ∩S(π, π0)) ⊆ P and an inequality

is a split cut if and only if it is valid for conv(P ∩ S(π, π0)) for some (π, π0) ∈ Zn × Z. It is straightforward

that {(x, y) ∈ Rn×Rp : π0 < πx < π0 + 1}, the split set associated with (π, π0), does not contain any integer

point, so split cuts are also a type of intersection cuts introduced by Balas [2]. Note also that split cuts are a

generalization of Chvátal-Gomory cuts, as a Chvátal-Gomory cut is equivalent to a split cut obtained from a split

disjunction where one side of the disjunction is empty. Nemhauser and Wolsey [22] introduced mixed integer

rounding cuts, and they showed that mixed integer rounding cuts and split cuts are equivalent. It is also not hard

to see that Gomory’s mixed integer cuts [19] are split cuts (see [7]).

Cook, Kannan, and Schrijver [8] introduced a notion of closure as follows.

P ′ :=
⋂

(π,π0)∈Zn×Z

conv (P ∩ S(π, π0))

is the split closure of P . By its definition, PI ⊆ P ′ ⊆ P . The MIR closure of P , what is obtained after applying

all mixed integer rounding cuts of P , and the MI closure of P , what is obtained after applying all Gomory’s

mixed integer cuts of P , are in fact identical to the split closure of P [22, 10]. A main result of Cook, Kannan,

and Schrijver [8] is that the split closure of a rational polyhedron is, again, a rational polyhedron, meaning that

it can be described by finitely many split inequalities. This is analogous to the fact that the Chvátal closure of

a rational polyhedron is also a rational polyhedron [6, 23]. Later, Andersen, Cornuéjols, and Li [1] and Dash,

Günük, and Lodi [14] provided different proofs for the polyhedrality of the split closure of a rational polyhedron.

Although there are some computational results [16, 4] showing that the rank-1 split cuts are effective in

practice, Caprara and Letchford [5] showed that optimizing over the split closure of a rational polyhedron is

NP-hard. In addition, Mahajan and Ralphs [21] showed that it is NP-complete to decide whether there exists

a split S(π, π0) for some (π, π0) ∈ Zn × Z such that P ∩ S(π, π0) is empty, which implies that selecting an

optimal split in terms of the gap closed is NP-hard. In this paper, we prove the following hardness result:

Theorem 1.1. Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron. It is NP-complete to decide whether the

split closure of P is empty, even when P is contained in the unit hypercube [0, 1]n.

The proof of Theorem 1.1 is given in Section 3. In Section 4, we will argue that our reduction for proving

this NP-hardness result extends the result of Caprara and Letchford [5]. The reduction also generalizes the

result of Mahajan and Ralphs [21] to an arbitrary number of split disjunctions. Section 4 contains more precise

statements.

2 Related work

As we mentioned earlier, Mahajan and Ralphs [21] considered the problem of deciding whether there exists a

single split disjunction that can certify that the split closure of a rational polytope is empty, and they proved

that the problem is NP-complete. Cornuéjols and Li [11, 12] in their recent papers considered the problem of
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deciding whether the Chvátal-Gomory closure of a rational polytope is empty. Their technique to show that the

problem is NP-complete is similar to Mahajan and Ralphs [21]’s approach. More recently, Cornuéjols, Lee, and

Li [9] improved this result, by proving that the problem remains NP-complete even when the input polytope is

contained in the unit hypercube. Notice that the Chvátal-Gomory closure of a rational polyhedron P ⊆ Rn is

obtained by applying a special type of split disjunctions (π, π0) ∈ Zn×Z such that either P∩{x : πx ≤ π0} = ∅
or P ∩ {x : πx ≥ π0 + 1} = ∅.

All the above hardness results were obtained by providing polynomial reductions from either the Partition

Problem or the Equality Knapsack Problem (see [17]):

Partition Problem. Given n positive integer weights a1, · · · , an, either find a set of binary integers {xi}ni=1

satisfying
∑n
i=1 aixi = 1

2

∑n
i=1 ai or show that none exists.

Equality Knapsack Problem. Given n positive integer weights a1, . . . , an and a capacity b, either find a set of

nonnegative integers {xi}ni=1 satisfying
∑n
i=1 aixi = b or show that none exists.

The reductions are basically as follows. Given n positive weights a1, . . . , an and a positive capacity b for either

a partition problem instance (b = 1
2

∑n
i=1 ai in this case) or an equality knapsack instance, one can construct a

rational polytope as the convex hull of n + c1 points in Rn+c2 , where c1 and c2 are fixed constants, so that its

linear description can be computed in polynomial time.

One might wonder whether there is a similar construction to prove Theorem 1.1 that is about the split closure.

Given an equality knapsack instance with n weights, we construct a rational polytope in [0, 1]n+4. Although our

construction includes Ω(2n) extreme points, we can still find its linear description in polynomial time. We

provide our construction in the next section.

3 Reduction from Equality Knapsack

In this section, we show two lemmas to prove Theorem 1.1.

Lemma 3.1. The problem of deciding whether the split closure of a rational polyhedron P = {x ∈ Rn : Ax ≤
b} given by its linear description is empty is in complexity class NP.

Proof. Theorem 13 in [14] by Dash, Günlük, and Lodi implies that the split closure of P can be described by

finitely many split inequalities whose encoding sizes are polynomially bounded by the encoding size of P . When

the split closure is empty, then the intersection of the half-spaces defined by finitely many split inequalities is

empty. Then by Helly’s theorem, for some k ≤ n + 1, there are k split inequalities of polynomially bounded

encoding size that certify that the split closure of P is empty. Therefore, we have a polynomial size NP certificate

for the problem.

Now that we know the problem is in NP, what remains is to show that the problem is NP-hard, even when

the input polytope is contained in the unit hypercube.
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Lemma 3.2. Given an equality knapsack instance of n positive weights a1, . . . , an and a positive capacity b,

one can in polynomial time generate the linear description of a rational polytope P ⊆ [0, 1]n+4 contained in the

unit hypercube that satisfies the following:

(a)
(
1
2 , . . . ,

1
2

)
is contained in P , but P contains no integer point.

(b) There exists a solution to the equality knapsack instance if and only if there exists a split cut for P that

separates
(
1
2 , . . . ,

1
2

)
.

(c) There exists a solution to the equality knapsack instance if and only if the split closure of P is empty and

there is a single split disjunction to certify this.

Proof. We may assume that b is sufficiently large so that b > n + 2, while the knapsack problem still remains

NP-hard. We may also assume that 0 < a1, . . . , an < b. Consider the following n + 6 points v1, . . . , vn+6 in

[0, 1]n+4.

v1 :=
(

a1
4b , 0, · · · , 0, 0, 0, 1

8b , 0, 1
8b

)
v2 :=

(
0, a2

4b , · · · , 0, 0, 0, 1
8b , 0, 1

8b

)
...

vn−1 :=
(

0, 0, · · · , an−1

4b , 0, 0, 1
8b , 0, 1

8b

)
vn :=

(
0, 0, · · · , 0, an

4b , 0, 1
8b , 0, 1

8b

)
vn+1 :=

(
a1
4b ,

a2
4b , · · · , an−1

4b , an
4b , 0, 0, 1

4 −
1
8b , 0

)
vn+2 :=

(
1− a1

2b , 1− a2
2b , · · · , 1− an−1

2b , 1− an
2b , 1, 1

4 + 1
8b , 0, 1

4 + 1
8b

)
vn+3 :=

(
0, 0, · · · , 0, 0, 0, 1

2 + 1
8b , 0, 0

)
vn+4 :=

(
0, 0, · · · , 0, 0, 0, 0, 1

2 , 0
)

vn+5 :=
(

0, 0, · · · , 0, 0, 0, 0, 0, 1
2 + 1

8b

)
vn+6 :=

(
0, 0, · · · , 0, 0, 0, 1

4 −
n+2
8b ,

1
4 + 1

8b ,
1
4 −

n+2
8b

)
Let P be a rational polytope defined as follows:

P :=

x =

n+6∑
i=1

viyi :

4b
4b+1 ≤

∑n+6
i=1 yi ≤ n+ 6− 4b

4b+1

yn+3 + yn+5 − 1 ≤ yn+4 ≤ yn+3 + yn+5

0 ≤ yi ≤ 1, ∀i ∈ [n]


Claim 1. The linear description of P that involves only x variables can be obtained in polynomial time.

Proof of Claim. We can rewrite P as P = {x ∈ Rn+4 : x = V y, Ay ≤ b} where V is the matrix whose

columns are v1, . . . , vn+6 and Ay ≤ b is the system of the other constraints in P . Notice that v1, . . . , vn, vn+2,

vn+3, vn+4, and vn+5 are linearly independent, and let B denote the column submatrix of V that consists of

these vectors. Let N denote the column submatrix of the remaining columns. Then x = V y is equivalent

to yB = B−1x − B−1NyN , where yB and yN consist of the components of y that correspond to B and N ,

respectively. LetA be decomposed into its two column submatricesC andD so thatAy = CyB+DyN . Then, P

can be written as P = {x ∈ Rn+4 : CB−1x+ (D−CB−1N)yN ≤ b}. yN consists of only two variables yn+1

and yn+6, so projecting away yN from P can be done in polynomial time by the Fourier-Motzkin elimination

method. Therefore, we can find a linear system describing P that involves x variables only in polynomial time.

♦

4



To complete the proof, we show that P satisfies properties (a), (b), and (c). Let u denote
(
1
2 , . . . ,

1
2

)
. To

show that (a) is satisfied, we need the following two claims.

Claim 2. u ∈ P and P is centrally symmetric with respect to u.

Proof of Claim. Notice that
∑n+6
i=1 v

i = (1, . . . , 1). Then u =
∑n+6
i=1

1
2v
i ∈ P , because yi = 1

2 for i ∈ [n + 6]

satisfy the constraints. In addition, given x =
∑n+6
i=1 v

iyi, observe that 2u − x =
∑n+6
i=1 v

i(1 − yi) as 2u =∑n+6
i=1 v

i. Therefore, x ∈ P if and only if 2u−x ∈ P , so P is centrally symmetric with respect to u, as required.

♦

Claim 3. P ⊆ [0, 1]n+4 and P ∩ {0, 1}n+4 = ∅.

Proof of Claim. For x =
∑n+6
i=1 v

iyi ∈ P , we know that 0 ≤
∑n+6
i=1 v

iyi ≤
∑n+6
i=1 v

i = (1, . . . , 1), because

v1, . . . , vn+6 ≥ 0. That means P is contained in [0, 1]n+4. Let z =
∑n+6
i=1 v

iyi ∈ P . We would like to

show that z 6∈ {0, 1}n. Suppose otherwise. If zj = 1 for some 1 ≤ j ≤ n, then it must be the case that

yj = yn+1 = yn+2 = 1 because zj =
aj
4b yj +

aj
4b yn+1 +

2b−aj
2b yn+2 ≤ 1 and the equality holds only if

yj = yn+1 = yn+2 = 1. In fact, yn+1 = yn+2 = 1 implies that zj > 0 for each j ∈ [n + 4] and thus

z = (1, . . . , 1) and yi = 1 for each i ∈ [n + 6]. However, this violates constraint
∑n+6
i=1 yi < n + 6, a

contradiction. Thus, zj = 0 for all 1 ≤ j ≤ n. This implies yi = 0 for 1 ≤ i ≤ n + 2, so z = (0, . . . , 0) is the

only possibility. However, we observed that (1, . . . , 1) 6∈ P , so (0, . . . , 0) 6∈ P by Claim 2. This contradicts the

assumption that z ∈ P . Therefore, we get that P ∩ {0, 1}n+4 = ∅, as required. ♦

By Claim 2 and Claim 3, we know that P satisfies (a). To prove that P also satisfies (b) and (c), we show

the following two claims:

Claim 4. If there exists a solution to the equality knapsack instance, then the split closure of P is empty and

there is a single split disjunction to certify this.

Proof of Claim. Let (d1, . . . , dn) be a solution to the equality knapsack instance, so
∑n
i=1 aidi = b and di ≥ 0

for i ∈ [n]. Let π := (d1, . . . , dn,−
∑n
i=1 di, 1,−1, 1) ∈ Zn+4. Observe that

πvi =
aidi
4b

+
1

4b
i = 1, . . . , n, πvn+1 =

1

8b
, πvn+2 =

1

4b
,

πvn+3 =
1

2
+

1

8b
, πvn+4 = −1

2
, πvn+5 =

1

2
+

1

8b
, πvn+6 =

1

4
− n

4b
− 5

8b
.

Let x ∈ P . Then x =
∑n+6
i=1 v

iyi for some y satisfying the constraints for P . Notice that
∑n+5
i=n+3 yiπv

i =
1
8b (yn+3 + yn+5) + 1

2 (yn+3 − yn+4 + yn+5). Then we have

0 ≤
n+5∑
i=n+3

yiπv
i ≤ 1

4b
+

1

2
(1)

5



where the first equality holds only if yn+3 = yn+4 = yn+5 = 0 and the second equality holds only if yn+3 =

yn+4 = yn+5 = 1. Now, consider yn+6πv
n+6 +

∑n+2
i=1 yiπv

i. Clearly, πvi ≥ 0 for 1 ≤ i ≤ n + 2 and

πvn+6 ≥ 0 as we assumed that b ≥ n+ 3. This implies

0 ≤ yn+6πv
n+6 +

n+2∑
i=1

yiπv
i ≤ πvn+6 +

n+2∑
i=1

πvi =
1

2
− 1

4b
(2)

where the first equality holds only when y1 = · · · = yn+2 = yn+6 = 0 and the second equality holds only when

y1 = · · · = yn+2 = yn+6 = 1. From (1) and (2), we get that 0 ≤ πx ≤ 1 where πx = 0 only if yi = 0 for all

i ∈ [n + 6] and πx = 1 only if yi = 1 for all i ∈ [n + 6]. As 0 <
∑n+6
i=1 yi < n + 6, we know that πx can be

neither 0 nor 1. That means P ⊆ {x : 0 < πx < 1}. Therefore, P ∩ S(π, 0) = ∅ and thus the split closure of P

is empty, as required. ♦

Claim 4 proves one direction of each of (b) and (c). The other direction of each can be shown by the

following claim.

Claim 5. If there exists a split cut separating u =
(
1
2 , . . . ,

1
2

)
, then there exists a solution to the equality

knapsack instance.

Proof of Claim. Since there is a split cut that separates u, there exist π ∈ Zn+4 and π0 ∈ Z such that u 6∈
conv (P ∩ S(π, π0)), Then π0 < πu < π0 + 1. As S(−π,−π0 − 1) is identical to S(π, π0), we may assume

that π0 ≥ 0 without loss of generality. We will show that π and π0 satisfy the following five properties.

(1) πn+1 = −
∑n
i=1 πi.

(2) πn+2 = πn+4 = 1 and πn+3 = −1.

(3) π0 = 0.

(4)
∑n
i=1 aiπi = b.

(5) πi ≥ 0 for i = 1, . . . , n.

(1) – (5) imply that (π1, . . . , πn) is a solution to the equality knapsack instance. Since
∑n+4
i=1 πi is an integer and

πu = 1
2

∑n+4
i=1 πi is strictly between two consecutive integers π0 and π0 + 1, we get πu = π0 + 1

2 . Let x ∈ P .

Then 2u − x ∈ P by Claim 2. If x, 2u − x ∈ S(π, π0), then u = 1
2x + 1

2 (2u − x) ∈ conv (P ∩ S(π, π0)), a

contradiction. Hence, for every x ∈ P , either π0 < πx < π0 + 1 or π0 < π(2u− x) < π0 + 1 holds.

(1): Consider w1 :=
(
0, . . . , 0, 0, 12 ,

1
2 ,

1
2

)
= 4b

4b+1v
n+3 + vn+4 + 4b

4b+1v
n+5 ∈ P . Then πw1 = πu −

1
2

∑n+1
i=1 πi and π

(
2u− w1

)
= πu+ 1

2

∑n+1
i=1 πi. We know that πu = π0+ 1

2 and that either π0 < πw1 < π0+1

or π0 < π
(
2u− w1

)
< π0 +1 holds, and we get−1 <

∑n+1
i=1 πi < 1 in each case. Since

∑n+1
i=1 πi is an integer

strictly between −1 and 1, it is equal to 0. Hence, (1) is satisfied.

(2) & (3): By (1), we obtain 1
2

∑n+4
i=n+2 πi = πu. Consider w2 :=

(
0, . . . , 0, 0, 12 , 0, 0

)
= 4b

4b+1v
n+3 ∈

P . By symmetry, 2u − w2 =
(
1, . . . , 1, 1, 12 , 1, 1

)
∈ P . Notice that πw2 = πu − 1

2 (πn+3 + πn+4) and
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π
(
2u− w2

)
= πu+ 1

2 (πn+3 + πn+4). As we argued before, we get πn+3 + πn+4 = 0. By considering w3 :=(
0, . . . , 0, 0, 0, 0, 12

)
= 4b

4b+1v
n+5 ∈ P , we can similarly argue that πn+2 + πn+3 = 0. Next, consider w4 :=(

0, . . . , 0, 0, 14 ,
1
4 ,

1
4

)
= 1

2w
1 ∈ P . Then, πw4 = πu − 1

4

∑n+4
i=n+2 πi and π

(
2u− w4

)
= πu + 1

4

∑n+4
i=n+2 πi.

Since we know that πu = π0 + 1
2 and that either π0 < πw4 < π0 + 1 or π0 < π

(
2u− w4

)
< π0 + 1 holds, we

obtain −1 ≤
∑n+4
i=n+2 πi ≤ 1. We observed that πu = 1

2

∑n+4
i=n+2 πi = π0 + 1

2 and assumed earlier that π0 ≥ 0,

so we get
∑n+4
i=n+2 πi ≥ 1. Then

∑n+4
i=n+2 πi = 1 and this means πn+2 = πn+4 = 1 and πn+3 = −1, because

we already have πn+2 + πn+3 = πn+3 + πn+4 = 0. As a result, π0 = πu− 1
2 = 0. Therefore, (2) and (3) are

satisfied.

(4): By (3) and πu = π0 + 1
2 , we have πu = 1

2 . We first consider vn+1 ∈ P . We have that πvn+1 =

−( 1
4 −

1
8b ) + 1

4b

∑n
i=1 aiπi. As π0 = 0, either 0 < πvn+1 < 1 or 0 < π

(
2u− vn+1

)
< 1 should hold.

Since π
(
2u− vn+1

)
= 1 − πvn+1, we in fact have 0 < πvn+1 < 1. In particular, πvn+1 > 0 implies that∑n

i=1 aiπi > b − 1
2 and thus we obtain

∑n
i=1 aiπi ≥ b. Next, consider vn+2 ∈ P . Notice that πvn+2 =

( 1
2 + 1

4b ) −
1
2b

∑n
i=1 aiπi and π

(
2u− vn+2

)
= 1 − πvn+2. Similarly, we get πvn+2 > 0, and this implies∑n

i=1 aiπi < b + 1
2 . Since

∑n
i=1 aiπi is an integer, it is indeed at most b. Consequently,

∑n
i=1 aiπi = b, as

required.

(5): Let i ∈ [n]. To show that πi ≥ 0, we consider vi ∈ P . Notice that πvi = 1
4baiπi+

1
4b and π

(
2u− vi

)
=

1 − πvi. As we know that either 0 < πvi < 1 or 0 < π
(
2u− vi

)
< 1, we get 0 < πvi < 1. Then, πvi > 0

implies that aiπi > −1. Since aiπi is an integer, aiπi ≥ 0 and thus πi ≥ 0, as required. ♦

Claim 4 and Claim 5 finally prove that P satisfies (b) and (c), as required.

4 Implications

In this section, we note some consequences of Theorem 1.1 and Lemma 3.2. The separation problem over the

split closure of a rational polyhedron is defined as follows.

Separation Problem. Given a rational polyhedron P = {x ∈ Rn : Ax ≤ b} and a rational vector x̄ ∈ Qn,

either show that x̄ is contained in the split closure of P or a split cut that is violated by x̄.

Theorem 4.1 (Separation). The separation problem over the split closure of a rational polyhedron is NP-hard,

even when P is contained in the unit hypercube.

Proof. Lemma 3.2 implies that, given an equality knapsack instance of n− 4 positive weights a1, . . . , an and a

positive capacity b, one can in polynomial time construct a rational polytope P ⊆ [0, 1]n such that there exists

a split cut separating
(
1
2 , . . . ,

1
2

)
from P if and only if the equality knapsack instance has a solution. Therefore,

the separation problem over the split closure of a rational polytope in the unit hypercube is NP-hard.

We remark that Theorem 1.1 also trivially implies Theorem 4.1, as the separation problem over the split closure

considers a rational polytope whose split closure is empty as a special case. Furthermore, due to Grötschel,
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Lovász, and Schrijver [20]’s theorem on the equivalence between optimization and separation, we also get the

hardness result for the optimization problem over the split closure.

Corollary 4.2 (Optimization). Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron and c ∈ Qn be a rational

vector. Optimizing linear function cx over the split closure of P is NP-hard, even when P is contained in the

unit hypercube [0, 1]n.

Mahajan and Ralphs [21] proved that selecting a split disjunction certifying that a rational polytope has

empty split closure is NP-hard. Lemma 3.2, in particular, part (c) generalizes this result.

Theorem 4.3. Let P = {x ∈ Rn : Ax ≤ b} be a rational polytope and k be an any arbitrary integer. It is

NP-hard to decide whether there exist k split disjunctions S(πi, πi0) where (πi, πi0) ∈ Zn × Z for i = 1, . . . , k

such that
⋂k
i=1 conv

(
P ∩ S(πi, πi0)

)
= ∅.

When P contains no integer point, deciding emptiness of the split closure of P is the same as checking

whether the split closure of P coincides with its integer hull and is the same as checking whether the split rank

of P is 1. As a result, we obtain another direct corollary of Theorem 1.1.

Theorem 4.4. Let P = {x ∈ Rn : Ax ≤ b} be a rational polyhedron. It is NP-hard to decide whether the split

rank of P is exactly 1, even when P is contained in the unit hypercube [0, 1]n and P contains no integer point.

Corollary 4.2 indicates that it is difficult to optimize over the split closure of a rational polyhedron. On

the other hand, when we assume that the split closure of a rational polyhedron is identical to its integer hull,

optimizing over the split closure seems to become easier. In fact, we can show that

Proposition 4.5. Let P = {x ∈ Rn : Ax ≤ b} be a rational poltyope whose split rank is exactly 1 and c ∈ Qn.

The problem of optimizing linear function cx over P ∩ Zn is in NP ∩ co-NP.

One might wonder whether there is a polynomial time algorithm to solve integer programming over a rational

polytope that has split rank 1. The same question for the Chvátal rank was studied in [9]. The matching

problem [15] is an example where there exists a polynomial time algorithm. However, as Theorem 4.4 suggests,

it seems hard to use the split rank 1 condition when trying to find an efficient algorithm.

Another interesting question is whether we can prove a theorem similar to Theorem 1.1 for t-branch split

cuts introduced by Dash and Günlük [13]. To the best of the author’s knowledge, it is also an open question

whether the separation of the t-branch split cuts of a rational polyhedron is NP-hard. Unfortunately, the same

argument as the reduction shown in Lemma 3.2 might not work, because it is possible that there exist two split

disjunctions such that the union of the corresponding split sets contain P , even when there is no solution to the

equality knapsack instance.
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