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Problems Related to Graph Product Structure Theory

1. Polynomial Growth (David Wood)

The growth of a graph G is the function fG : N→ N where fG(r) is the maximum number

of vertices in a subgraph of G with radius at most r. Campbell, Distel, Gollin, Harvey,

Hendrey, Hickingbotham, Mohar, Wood conjectured the following rough characterisation of

graphs with polynomial growth.

Conjecture 1.1. There exist functions g : N × N → N and h : N × N → N such that, for

any c ⩾ 1 and d ∈ N every graph G with growth fG(r) ⩽ crd is isomorphic to a subgraph of

T1 ⊠ · · ·⊠ Td ⊠Kg(c,d), where each Ti is a tree of growth fTi
(r) ⩽ h(c, d)r.

The conjecture is even open for d = 1 (linear growth). In this case, Campbell et al. proved

that G is isomorphic to a subgraph of T ⊠ Kc′ , where T is a tree of maximum degree less

than 6c. For general d, it is even open whether every graph G with growth fG(r) ⩽ crd is

isomorphic to a subgraph of T1 ⊠ · · ·⊠ Td ⊠Kg(c,d), where each Ti is a tree (regardless of its

growth). This conjecture is closely related to the work of Krauthgamer and Lee, who proved

that the graph G in the conjecture is a subgraph of P1 ⊠ · · ·⊠ Pk, where each Pi is a path,

and k ∈ O(d log d).

2. O(
√
n) Blow-Ups in Minor-Closed Classes (David Wood)

In what follows, G is an arbitrary minor-closed graph class excluding at least one graph.

Alon, Seymour & Thomas proved that n-vertex graphs in G have treewidth O(
√
n). The

following definition, implicitly introduced by Illingworth, Scott & Wood, naturally arises. Let

f(G) be the minimum integer k such that for some c, every n-vertex graph G ∈ G is contained

in H⊠Km, for some graph H with treewidth at most k, where m ⩽ c
√
n. Here H⊠Km is the

graph obtained from H by replacing each vertex by a copy of Km, and replacing each edge

by the complete join between the corresponding copies of Km. Illingworth, Scott & Wood

showed that f(G) is well-defined; in particular, if Gt is the class of Kt-minor-free graphs, then

f(Gt) ⩽ t−2, and if Gs,t is the class of Ks,t-minor-free graphs, then f(Gs,t) ⩽ s. Improving on

these results, Distel, Dujmović, Eppstein, Hickingbotham, Joret, Morin, Seweryn & Wood

showed that f(G) ⩽ 4 for every minor-closed class G. Results of Wood imply that for a minor-

closed class G, f(G) ⩽ 1 if and only if G has bounded treewidth, where the lower bound

follows from the Grid Minor Theorem together with a lower bound for planar graphs by

Linial, Matoušek, Sheffet & Tardos. Recently, Dujmović, Eppstein, Hickingbotham, Joret,
3
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Micek, Seweryn & Wood showed that if P is the class of planar graphs, then f(P) = 2.

More generally, for t ⩾ 3, they showed that if Gt is the class of K3,t-minor-free graphs, then

f(Gt) = 2. It is an intriguing open problem to determine f(G). It is possible that f(G) ⩽ 2

for every minor-closed class G. This is open even when G is the class of K5-minor-free graphs

[Illingworth et al.]. Let A be the class of apex graphs1, which is minor-closed. It is open

whether f(A) ⩽ 2. This is equivalent to the following open problem (which would strengthen

the above result of Dujmović, Eppstein, Hickingbotham, Joret, Micek, Seweryn & Wood: for

every n-vertex planar graph G, does there exist an apex-forest2 H such that G is contained

in H ⊠Km where m ∈ O(
√
n)?

3. O(n1−ϵ) Blow-Ups in Classes with Sublinear Separators (David Wood)

Problem 3.1 (Wood). Let G be an hereditary graph class such that every n-vertex graph in

G has a balanced separator of of order O(n1−ϵ). Does there exist a constant c = c(G) such

that every n-vertex graph G ∈ G is contained in H⊠Km, where tw(H) ⩽ c and m ∈ O(n1−ϵ).

Illingworth, Scott & Wood solved this question for minor-closed classes with ϵ = 1
2

(see

Problem 2). It may even be true that c is a function of ϵ only, which has been proved for

minor-closed classes [Distel et al.]. Wood proved it with O(n1−ϵ) replaced by O(n1−ϵ+δ) for

any fixed δ > 0, where c = c(ϵ, δ); and also with tw(H) ⩽ c replaced by tw(H) ⩽ O(log log n).

Here are some particular graph classes, where this problem is unsolved and interesting:

• touching graphs of 3-D spheres, which have O(n2/3) balanced separators [MTTV ’97]?

• k-crossing-degenerate graphs (i.e., have a drawing in the plane such that the associ-

ated crossing graph is k-degenerate), which have O(k3/4n1/2) separators [EG ’17]

• string graphs on m edges, which have O(m1/2) balanced separators [Lee ’16]?

4. Product Structure of Apex-Minor-Free Graphs (David Wood)

A graph X is apex if X − v is planar for some vertex v of X. Dujmović, Joret, Micek,

Morin, Ueckerdt & Wood proved that for any apex graph X there is an integer c such that

every X-minor-free graph is contained in H ⊠ P , where tw(H) ⩽ c and P is a path.

The proof uses a version of the Graph Minor Structure Theorem by Dvorak & Norin. Is

there a direct proof of this result that does not use the Graph Minor Structure Theorem?

Note this result implies the Grid Minor Theorem, so we either re-prove the Grid-Minor

Theorem or use it somehow.

1A graph H is apex if H − v is planar for some vertex v of H.
2A graph H is an apex forest if H − v is a forest for some vertex v of H.
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Now consider the following version of the above result.

Theorem 4.1 (Dujmović et al.). There are functions f and g such that for every apex

graph X, every X-minor-free graph G is isomorphic to a subgraph of H ⊠ P ⊠Kg(X), where

tw(H) ⩽ f(X) and P is a path.

The goal now is to minimise f , not caring so much about g. Illingworth, Scott & Wood

proved this with f(X) = τ(X), the vertex-cover number of X. Can we prove this with

f(X) ≈ td(X), the treedepth of X (which I expect is tight by the standard examples).

5. Planar products (Freddie Illingworth)

The seminal result in graph product structure theory is the planar graph product structure

theorem. Throughout P is a path.

Theorem 5.1 (Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood). Every planar graph

G is isomorphic to a subgraph of H ⊠ P ⊠K3 for some planar graph H of treewidth 3.

A similar result for graphs of genus g has also been proved 3.

Theorem 5.2 (Distel, Hickingbotham, Huynh, and Wood). Every graph G of genus g is

isomorphic to a subgraph of H ⊠ P ⊠Kmax{3,2g} for some planar graph H of treewidth 3.

These are very similar results with the only difference being the order of the clique. Perhaps

there is a direct reason for this.

Question 5.3. Is every graph G of genus g isomorphic to a subgraph of H ⊠Kf(g) where H

is a planar graph?

One could ask a similar question for k-planar graphs and for K3,t-minor-free graphs.

NOTE (David Wood) The answer is ‘no’ for K5-minor-free graphs. For every integer c

there is a treewidth 3 graph (and thus K5-minor-free graph) that is not a subgraph of H⊠Kc

where H is planar.

6. Product Structure of Intersecting Balls (David Wood)

The intersection graph of a collection of balls in Rd, such that each point is contained

in a bounded number of balls, is a classical geometric example generalising planar graphs

(via Koebe circle packing). Such graphs have O(n1−1/d)-separators [Miller, Teng, Thurston,

Vavasis]. I conjecture the following product structure theorem for this class.

3A graph has genus at most g if it can be embedded without crossing on a surface of genus g.
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Conjecture 6.1. The intersection graph of a collection of balls in Rd, such that each point

of Rd is contained in at most c balls, is obtained by clique-sums of graphs of the form (H ⊠

P1⊠· · ·⊠Pd−1)+Ka for some graph H of treewidth at most some function f(d, c) and integer

a = a(d, c), where each Pi is a path.

The case where the balls are touching is also of interest. In the d = 2 case, this is the

Planar Graph Product Structure Theorem (with a = 0). Maybe a = d− 2 in general?

7. Nearest Neighbour Graphs (David Wood)

Nearest neighbour graphs are of interest in computational geometry. For a finite point set

X in Rd, the k-nearest-neighbour graph of X has vertex set X, where two vertices v, w are

adjacent if v is among the k nearest neighbours of w in X, or vice versa. Dujmović, Morin,

Wood conjectured the following product structure, and proved it in the d = 2 case.

Conjecture 7.1 (Dujmović, Morin, Wood). Every k-nearest neighbour graph in Rd is a

subgraph of H ⊠ P1 ⊠ · · · ⊠ Pd−1 for some graph H of treewidth at most some function

f(k, d), where each Pi is a path.

χ-boundedness

8. Gyárfás-Sumner Conjecture for directed graphs (Linda Cook, James

Davies)

Question 8.1. Is there a function f such that every digraph D not containing a digon or a

directed P5 has dichromatic number at most f(ω(D))? Here ω(D) is the size of a maximum

clique in the graph underlying D.

An oriented graph is a digraph that does not contain a directed cycle of length two. An

(oriented) graph D is H-free if D does not contain H as an induced sub(di)graph. Aboulker,

Charbit, and Naserasr [Extension of Gyárfás-Sumner Conjecture to Digraphs; E-JC 2021]

proposed an analogue of the Gyárfás-Sumner Conjecture conjecture to the dichromatic num-

ber of oriented graphs: for every oriented forest F , there is some function f such that every

F -free oriented graph D has dichromatic number at most f(ω(D)).

Note the converse is true: Harutyunyan and Mohar proved that there exist directed graphs

of arbitrarily large undirected girth and dichromatic number ( Two results on the digraph

chromatic number, Discrete Mathematics, 2012) The conjecture is widely open. Chudnovsky,
6
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Scott and Seymour showed that all oriented stars and P4 with orientation ←←→ or →→←
all satisfy the conjecture, by proving a stronger result Induced subgraphs of graphs with

large chromatic number. XI. Orientations

Tomáš Masař́ık, Marcin Pilipczuk, Amadeus Reinald and Uéverton S. Souza and I ex-

tended this to say that it all holds for the other orientations of P4 at a Sparse Graphs

Coallition workshop last year. https://arxiv.org/pdf/2209.06171.pdf It is open for any

orientation of a tree that is not a star or a path of length at most three. Recently, Aboulker,

Aubian, Charbit, and Thomassé showed that every
−→
P6-free oriented graph D with ω(D) ⩽ 2

has dichromatic number at most 382. (P6, triangle)-free digraphs have bounded dichromatic

number (Here
−→
P6 is the path on 5 edges with orientation →→→→→.)

Problem 8.2. Can we show the conjecture for another tree? maybe
−→
P5? Easier question:

Can we show that for some oriented tree T and integer k that every T -free oriented graph D

with ω(D) ⩽ k has bounded dichromatic number.

Problem 8.3. Is it true that for every oriented tree
−→
T , and t ⩾ 2, the class of Kt,t-free

graphs with a
−→
T -free orientation has bounded chromatic number?

8.1. Update (Alex Scott). April 17. Alex Scott provided a proof of Problem 8.3 in the

affirmative.

9. Square and diamond-free graphs and χ-boundedness (James Davies)

Not all χ-bounded classes are polynomially χ-bounded, but perhaps there are general

conditions that would imply certain χ-bounded classes are polynomially χ-bounded. As a

starting point, I conjecture that this is the case for hereditary classes containing no induced

square or diamond subgraph.

Conjecture 9.1. Every hereditary χ-bounded class of graphs containing no induced C4 or

K4 − e is polynomially χ-bounded.

10. χ-certificates (António Girão)

Recently, Briański, Davies, and Walczak (developing the ideas of Carbonero, Hompe,

Moore, and Spirkl) showed that for every prime p there is c(p) such that for every k there

is a graph G which is Kp+1-free, with chromatic number is at least k and with the property

that every induced subgraph G′ ⊂ G with χ(G′) ⩾ c(p) must contain a Kp. This has been

extended for all graphs H by Girao, Illingworth, Powierski, Savery, Scott, Tamitegama and,

Tan. Namely, we showed that for every H, there is c(H) such that for every k, there is a
7
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graph G with chromatic number at least k, with the same clique number as H and with the

property that for every G′ ⊂ G with χ(G′) ⩾ c(H) must contain an induced copy of H.

All these constructions rely on the use of congruence classes and hence they have very large

complete bipartite graphs (depending on k). The problem I suggest is to find for every graph

H (perhaps cliques, first) a graph G as above for which the bi-clique number is bounded by

a function of H.

11. Linearly χ-boundedness for vertex-minors (Sang-il Oum)

Can we identify classes of graphs closed under taking vertex-minors that are linearly χ-

bounded? Or, can we determine graphs H such that the class of H-vertex-minor-free graphs

is linearly χ-bounded?

Nešetřil, Ossona de Mendez, Rabinovich, and Siebertz showed that every class of graphs

of bounded linear rank-width is linearly χ-bounded. This implies that if H is a path, then

the class of H-vertex-minor-free graphs is linearly χ-bounded, because they are proven to

have bouned rank-depth, implying bounded linear rank-witdh.

A conjecture would say that if H is a tree, then the class of H-vertex-minor-free graphs

will have bounded linear rank-width. If so, then for a tree H (or a distance-hereditary graph

H), the class of H-vertex-minor-free graphs will be linearly χ-bounded.

Davies proved that the class of circle graphs is not linearly χ-bounded. This would imply

that if the class of H-vertex-minor-free graphs is linearly χ-bounded, then H is necessarily

a circle graph.

If H = C5, then H-vertex-minor-free graphs are distance-hereditary and so perfect, im-

plying that they are linearly χ-bounded.

12. Polynomial χ-boundedness of graphs of bounded mim-width (from

O-joung Kwon)

Mim-width is a width parameter introduced by Martin Vatshelle in his Ph.D thesis. For a

vertex partition (A,B) of a graph G, let G[A,B] denote the bipartite graph on V (G) where

the edge set of G[A,B] is the set of all edges of G incident with both A and B. A branch-

decomposition of a graph G is a pair of a subcubic tree T and a bijection from V (G) to the set

of leaves of T . For each edge e of T , let (Ae, Be) be the corresponding vertex partition, and

the width of e is defined as the maximum induced matching of G[Ae, Be]. Then the width

of the decomposition is the maximum width among all edges e of T , and the mim-width

of G is the minimum width over all decompositions of G. Graphs of bounded clique-width
8
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are bounded mim-width, but interval graphs and permutation graphs have mim-width 1 and

unbounded clique-width. Mim-width and twin-width are incomparable.

For every fixed k, is the class of graphs of mim-width at most k is polynomially χ-bounded?

A positive answer to this question would generalize a result for bounded clique-width graphs

by Bonamy and Pilipczuk.

Induced Subgraphs

13. Anticomplete Subgraphs (Alex Scott)

Does there exist a constant c such that every triangle-free graph G with χ(G) ⩾ c contains

two disjoint anti-complete induced subgraphs G1 and G2 with χ(G1) ⩾ 4 and χ(G2) ⩾ 4.

Here ‘anticomplete’ means there is no edge between G1 and G2. See https://arxiv.org/

abs/2303.13449 for background.

14. Erdős-Posa Property for induced cycles (Linda Cook)

This problem was told to me by Jihna Kim. Her motivation to study this problem comes

from topological combinatorics, but it can be phrased entirely as a problem about induced

subgraphs. See Jihna Kim’s paper for the topological motivation.

A class of graphs H has the induced Erdős-Posa property if there is a function f such that

for every k > 0 and graph G either G has k vertex disjoint induced copies of graphs in H or

there is a S ⊆ V (G) of cardinality at most f(k) such that G \S does not contain a graph in

H (as an induced subgraph).

Problem 14.1. Do cycles of length 0 mod 3 have the induced Erdős-Posa property?

In fact, the following easier version of Problem 14.1 would already have nice applications

in topological combinatorics.

Problem 14.2. Let G be the class of graphs satisfying the following condition: There are no

two non-adjacent u, v ∈ V (G) such that N(u) ⊆ N(v). Does Problem 14.1 hold if we restrict

ourselves to G?
In other words, is there a function f such that for integer k > 0 and graph G ∈ G either

G has k vertex disjoint ternary cycles or there is a S ⊆ V (G) of cardinality at most f(k)

such that G \ S does not contain a ternary cycle.

Note we may also restrict ourselves of graphs that have no two adjacent vertices of degree 2.

Some related results:
9
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• The structure of graphs without cycles of length 0 mod 3 has been examined by

Marthe Bonamy, Stéphan Thomassé, Pierre Charbit and Maria Chudnovsky, Alex

Scott, Paul Seymour, Sophie Spirkl.

• It is a nice result of Eunjung Kim and O-joung Kwon that the set of all induced

cycles of length at least 4 has the induced Erdos-Posa property.

• This has since been strengthened to show that the set of all induced cycles of length

at least 6 has the induced Erdős-Posa property when restricted to C4-free graphs.

(Tony Huynh, O-joung Kwon)

• Moreover Kim and Kwon provide a construction showing that for any set S of cycles,

if S has the induced Erdős-Posa property then C3 ∈ S or C4 ∈ S.

15. Unavoidable induced subgraphs of large treewidth graphs (Robert

Hickingbotham)

Problem 15.1 (Hickingbotham, Illingworth, Mohar & Wood). Let G be a proper vertex-

minor closed class. Describe the unavoidable induced subgraphs of graphs in G with large

treewidth.

There has been significant interest in understanding the induced subgraphs of graphs with

large treewidth. To date, most of the results in this area have focused on graph classes

where the unavoidable induced subgraphs are the following usual suspects : a complete graph

Kt, a complete bipartite graph Kt,t, a subdivision of the (t × t)-wall, or the line graph of

a subdivision of the (t × t)-wall. Recently, Hickingbotham, Illingworth, Mohar & Wood

described the unavoidable induced subgraphs of circle graphs with large treewidth. Here, a

circle graph is an intersection graph of a set of chords of a circle.

Theorem 15.2 (Hickingbotham, Illingworth, Mohar & Wood). Let t ∈ N and let G be a

circle graph with treewidth at least 12t + 2. Then G contains an induced subgraph H that

consists of t vertex-disjoint cycles (C1, . . . , Ct) such that for all i < j every vertex of Ci has

at least two neighbours in Cj. Moreover, every vertex of G has at most four neighbours in

any Ci (1 ⩽ i ⩽ t).

It would be of interest to describe the unavoidable induced subgraphs for other graph

classes where the candidates for the unavoidable induced subgraphs include graphs that are

not the usual suspect. One natural extension of circle graphs is to arbitrary (proper) vector-

minor closed classes. For a vertex v of a graph G, to locally complement at v means to

replace the induced subgraph on the neighbourhood of v by its complement. A graph H is
10
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a vertex-minor of a graph G if H can be obtained from G by a sequence of vertex deletions

and local complementations. It is easy to see that circle graphs are closed under vertex-

minors. Moreover, every vertex-minor closed class with unbounded rank-width contains all

circle graphs (see The Grid Theorem for Vertex-Minors).

One useful property of proper vertex-minor-closed graph classes is that treewidth and

Hadwiger number are tied in such classes.

Theorem 15.3 (Unpublished). For any proper vertex-minor closed class G, there is a func-

tion f such that every graph G ∈ G with treewidth at least f(t) contains a Kt-minor.

Theorem 15.3 can easily be deduced from an observation about vertex-minors by James

Davies (personal communication) together with a result in On the Tree-Width of Even-Hole-

Free Graphs. The proof, however, goes through the Graph Minor Structure Theorem so it

isn’t very informative.

Problem 15.4. Can we find a direct proof of Theorem 15.3 that does not use the Graph

Minor Structure Theorem?

I suspect a solution to Problem 15.4 should help solve Problem 15.1.

16. Wheels and Tree-Width (James Davies)

A wheel is a graph consisting of an induced cycle of length at least 4, and a single additional

vertex adjacent to at least 3 vertices of the cycle. A graph is wheel-free if it contains no

induced wheel.

Problem 16.1. Describe the unavoidable induced subgraphs of wheel-free graphs with large

tree-width.

17. α-treewidth of graphs excluding a fixed induced minor (Sebastian

Wiederrecht)

The α-treewidth of a graph is a variant of treewidth that measures the distance of a

graph to being chordal rather than to being a tree as “regular” treewidth does. Given a

tree-decomposition (T, β) of a graph G, α(T, β) is defined to be maxt∈V (T ) α(G[β(t)]). The

α-treewidth of G is the minimum α over all tree-decompositions for G. This parameter was

defined independently by Yolov and Dallard, Milanič, and Štorgel to obtain better algorithms

for the Maximum Independent Set problem.

Two nice properties of α-treewidth are:
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(1) It is closed under taking induced minors, and

(2) given a hereditary class G of graphs such that α-tw(G) ⩽ c ∈ N for all G ∈ G, then

tw(G) ⩽ ω(G)c for all G ∈ G.

Since walls and their linegraphs have arbitrary large α-treewidth, excluding a non-planar

graph as an induced minor will never lead to a class of bounded α-degeneracy. Moreover,

Trotignon, Korhonen, Hatzel, and myself (unpublished) recently proved that induced K3,4-

minor-free graphs still contain a class of graphs found by Sintari and Trotignon which is

triangle-free and of unbounded treewidth, also implying unbounded α-treewidth. This class

avoids all of the usual suspects as induced minors. On the other side, Dallard, Milanič, and

Štorgel showed that induced K2,3-minor-free graphs have α-treewidth at most 3.

This leaves the following open problem.

Problem 17.1. For which planar graphs H does the class of graphs excluding K3,3 and H

as induced minors have bounded α-treewidth?

An interesting subproblem is a generalisation of a recent result of Kwon (personal com-

munication) who proved that for all integers s, t, every graph excluding Pt and the star with

s leaves as induced subgraphs has bounded α-treewidth.

Problem 17.2. For which choices of r, s, t does the class of graphs excluding Pr and Ks,t as

induced subgraphs have bounded α-treewidth?

18. α-degeneracy of hereditary graph classes (Linda Cook, Sebastian

Wiederrecht)

We say that a hereditary graph class G is (tw, ω)-bounded if there exists a function f : N→
N such that tw(G) ⩽ f(ω(G)) for all G ∈ G.

Using the notion of α-treewidth from Problem 17 one can observe that every hereditary

graph class of bounded α-treewidth is (tw, ω)-bounded. Dallard, Milanič, and Štorgel con-

jectured the reverse.

Conjecture 18.1 (Dallard, Milanič, and Štorgel). Every (tw, ω)-bounded graph class has

bounded α-treewidth.

Approaching this conjecture appears to be not easy. Instead one might consider the

following seemingly simpler question.

Given a linear order ⩽λ of the vertices of a graph G, we define the α-weight of ⩽λ has

the value maxv∈V (G) α(G[{x ⩽λ v | x ∈ NG(v)}]). The α-degeneracy of G is then defined to
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be the minimum α-weight over all linear orders of the vertices of G. This notion was first

investigated in the context of approximation algorithms for the Maximum Independent

Set problem by Borodin and Ye.

As for α-treewidth one can observe that for every hereditary graph class G where all G ∈ G
have α-degeneracy at most c it holds that every G ∈ G has degeneracy at most ω(G)c. We

say that a hereditary class of graphs G is (degeneracy, ω)-bounded of there exists a function

f : N → N such that for every G ∈ G it holds that G has degeneracy at most f(ω(G)).

Clearly, every class of bounded α-degeneracy is (degeneracy, ω)-bounded by the observation

above. We can now formulate our problem as the degeneracy-variant of Conjecture 18.1.

Problem 18.2. Is every (degeneracy, ω)-bounded graph class also of bounded α-degeneracy?

18.1. UPDATE. Question 18.2 was answered in the negative by Rose McCarty, António

Girão), and Raphael Steiner (and others?).

19. Well-quasi-ordering of permutation graphs (Rutger Campbell)

Given a permutation π on 1, . . . , n, we can define a graph on vertices v1, . . . , vn by taking

an edge vivj when i < j yet π(i) > π(j). Graphs that are isomorphic to such a construction

are called permutation graphs. Permutation graphs are closed under induced subgraphs.

Permutation graphs are not well-quasi-ordered under induced subgraphs; we can construct

an infinite set of permutation graphs where no two are induced subgraphs of one another.

However, such infinite anti-chains seem to have common features.

Conjecture 19.1. For any positive integers s, t, permutation graphs with no induced Ks or

Pt are well-quasi-ordered under induced subgraphs.

20. δ-boundedness (Rose McCarty)

A class of graphs F is δ-bounded if there exists a function f so that for each integer

t, every graph G ∈ F without Kt,t as a subgraph (even as a non-induced subgraph) has

δ(G) ⩽ f(t). Such a function f is called a δ-bounding function for F . So δ-boundedness is

like χ-boundedness but for minimum degree instead of chromatic number.

Briański, Davies, and Walczak [5] recently proved that optimal χ-bounding functions can

grow arbitrarily quickly, even for hereditary classes. This disproved Esperet’s Conjecture in

a strong way. However, for δ-boundedness, the analogous question is still open:

Question 20.1 (Bonamy, Bousquet, Pilipczuk, Rzażewski, Thomassé, and Walczak [3]).

Does every hereditary δ-bounded class have a δ-bounding function that is a polynomial?
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Very, very recently, Xiying Du and I have been able to prove the following theorem, which

we are currently writing up.

Theorem 20.2 (Du and McCarty, in preparation). For every hereditary δ-bounded class,

there exists an integer c so that 222
ct

is a δ-bounding function.

In fact, we think we can prove that there is a doubly-exponential δ-bounding function.

The intuition for why there is such a huge difference with χ-boundedness can be seen in

the following theorem; the analogous statement for χ-boundedness is false [6].

Theorem 20.3 (Kwan, Letzter, Sudakov, and Tran [9] plus McCarty [10]). A hereditary

class of graphs F is δ-bounded if and only if there exists an integer c so that every bipartite

graph G ∈ F with no 4-cycles has δ(G) ⩽ c.

This area has many natural open questions. Let me suggest a few.

Question 20.4. Let F be a hereditary δ-bounded class so that Fbip = {G ∈ F : G is bipartite}
has a polynomial δ-bounding function. Then does F have a polynomial δ-bounding function?

We say that a class F is almost δ-bounded if, for each ϵ > 0, there exists a function f so

that any n-vertex graph G ∈ F with no Kt,t-subgraph has |E(G)| ⩽ f(t)n1+ϵ. Note that for

hereditary classes, this would be exactly δ-boundedness if we could take ϵ = 0. There are

some connections to the Zarankiewicz problem, to nowhere denseness, and to model theory.

In particular, semilinear graphs are almost δ-bounded [2].

Question 20.5. Do the analogs of Theorems 20.2 and 20.3 hold for classes which are almost

δ-bounded?

The other main problems I would suggest involve particular examples of δ-bounded classes.

Such classes include:

(1) for each tree T , the class of all graphs without T as an induced subgraph [12],

(2) for each graph H, the class of all graphs without H as an induced subdivision [8],

(3) any class of bounded twin-width [4] or bounded flip-width [13] (essentially by [7]),

(4) for each integer s, the class of all graphs with no independent set of size s (see [1]),

(5) for each integer d, the class of all intersection graphs of balls in Rd (see [11]).

It is open whether (ii) is polynomially δ-bounded, and we have not looked into (iii) yet. The

others are known to be polynomially δ-bounded. It seems interesting to know whether the

bounds for (iv) are the same as for off-diagonal Ramsey numbers.
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Graph Colouring

21. Attacking Hadwiger’s Conjecture via Chordal Partitions (David Wood)

Reed and Seymour asked the following question: For any graph G, is there a partition P of

V (G) such that the quotient of P is chordal, and for each part X ∈ P , the induced subgraph

G[X] is connected and bipartite? A positive answer to this question would imply that Kt+1-

minor-free graphs are 2t-colourable, which would be a major breakthrough on Hadwiger’s

Conjecture. Scott, Seymour and Wood showed that the answer is “no”, and remains “no”

with “chordal” replaced by by “perfect” (and under various other weakenings). However,

their construction replies heavily on clique-separators, which one can assume do not exist

when colouring in a hereditary family. The following question arises:

Problem 21.1. For any graph G with no clique separator, is there a partition P of V (G)

such that the quotient of P is perfect, and for each part X ∈ P, the induced subgraph G[X]

is connected and bipartite?

A positive answer to this question would still imply that Kt+1-minor-free graphs are 2t-

colourable. It would still be interesting with “bipartite” replaced by “c-colourable” for some

constant c.

22. Clustered Colouring of Planar Graphs (David Wood)

A (non-proper) vertex colouring of a graph has clustering c if each monochromatic com-

ponent has at most c vertices. The 4-Color Theorem is best possible, even in the setting of

clustered colouring. That is, for all c there are planar graphs for which every 3-coloring has

a monochromatic component of size greater than c; see my survey on this topic. These ex-

amples have unbounded maximum degree. This is necessary since Esperet and Joret proved

that every planar graph with bounded maximum degree is 3-colorable with bounded cluster-

ing. In fact, these example contain large K2,t subgraphs. The following question naturally

arises:

Problem 22.1 (Liu & Wood). Does every planar graph with no K2,t subgraph have a 3-

coloring with clustering at most some function f(t)?

22.1. UPDATE (Zdeněk Dvořák). I think a positive answer to Problem 22.1 follows

using the method of Dvořák & Norin [Weak diameter coloring of graphs on surfaces] even if

a path + two universal vertices is forbidden instead of K2,t.
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23. Odd colourings of planar graphs (Michael Savery)

An odd colouring of a graph G is a proper colouring of its vertex set such that for every

non-isolated vertex of G, there exists a colour that appears an odd number of times in its

neighbourhood. The odd chromatic number of G, denoted χo(G), is the minimum number of

colours required in an odd colouring of G. These definitions, which are motivated by certain

hypergraph colouring problems, were introduced recently by Petruševski and Škrekovski in

a paper which focussed on the odd chromatic number of planar graphs. In particular, they

sought an analogue of the four colour theorem in this setting. Observing that χo(C5) = 5,

they conjectured that five colours suffice for all planar graphs.

Conjecture 23.1. For every planar graph G we have χo(G) ⩽ 5.

They showed that χo(G) ⩽ 9 for all planar G using a discharging argument. Shortly

afterwards Caro, Petruševski, and Škrekovski improved the bound to 8 for large classes

of planar graphs, before Petr and Portier extended this to all planar graphs, again via a

discharging argument. The former group also proved Conjecture 23.1 for outerplanar graphs.

One direction of study related to this conjecture which has been particularly fruitful

has been bounding the odd chromatic number of planar graphs under a minimum girth

assumption. The state of the art here is that χo(G) ⩽ 4 for planar G of girth at least 11,

χo(G) ⩽ 5 if the girth is at least 7, and χo(G) ⩽ 6 if the girth is at least 5 (the first and third

are due to Cho, Choi, Kwon, and Park, the second is due to Cranston). It was conjectured

by Petruševski and Škrekovski that in fact χo(G) ⩽ 4 for planar G of girth at least 6 (note

that the four colour theorem would follow easily from this by subdividing all edges).

At the workshop we could try to make progress towards Conjectrue 23.1 or to make some

improvements to the girth conditions above. There are also many other related questions

we could think about. For example, there are various interesting results and conjectures

on bounding odd chromatic number in terms of maximum degree, and on the minimum

number of colours needed in the stronger notion of a proper vertex-colouring in which for

every non-isolated vertex there is a colour which appears exactly once in its neighbourhood

(the so-called proper conflict-free chromatic number).
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24. Low treewidth colouring of bounded degree graphs (Robert

Hickingbotham)

Problem 24.1 (Wood). What is the maximum ∆ such that every graph with maximum

degree ∆ can be 2-coloured such that each colour class has bounded treewidth? It is known

that ∆ ∈ {5, . . . , 15}.

Berger, Dvořák, & Norin showed that if a graph G is a ‘triangulation’ of a sufficiently

large n × n × n grid, then for every 2-colouring of G, there is a colour class with large

treewidth. Eppstein, Hickingbotham, Merker, Norin, Seweryn, & Wood introduced a family

of graphs (Gn : n ∈ N) based on a tessellation of R3 by truncated octahedra that have similar

structural properties to triangulations of 3D-grids but with maximum degree 7.

Problem 24.2. For sufficiently large n, does every 2-colouring of Gn have a colour class

with large treewidth?

It seems feasible that the proof technique in Treewidth of Grid Subsets could be adapted

to resolve Problem 24.2. In which case, this would imply that ∆ ∈ {5, 6} for Problem 24.1.

The remaining case would then be ∆ = 6 which I don’t have any ideas for. See Section 10

of Defective and Clustered Graph Colouring for further background on this question.

24.1. UPDATE (Zdeněk Dvořák). I chatted about this with Sergey Norin in February;

he developed a theory of higher-dimensional brambles which among other things implies a

positive answer to Problem 24.2.

24.2. UPDATE (Zdeněk Dvořák et al.) (Zdeněk Dvořák et al.) The following theorem

shows that ∆ ⩽ 6 in Problem 24.1, and in fact proves a stronger result. For c > 0 and

β ∈ (0, 1), say a graph G is (c, β)-separable if every subgraph G′ of G has a balanced

separator of size at most c|V (G′)|1−β. The following folklore lemma is proved in Wood’s

survey.

Lemma 24.3. Fix c > 0, β ∈ (0, 1) and p ⩾ 1. Let G be a (c, β)-separable graph with n

vertices. Then there exists S ⊆ V (G) of size at most c2βn
(2β−1)pβ

such that each component of

G− S has at most p vertices.

Theorem 24.4. For all c > 0 and β ∈ (0, 1) there is a 7-regular graph that has no vertex-

partition into two induced (c, β)-separable subgraphs.

Proof. By ??? for infinitely many integers n there is an n-vertex bipartite graph G0 with

bipartition (A,B) where every vertex in A has degree 4 and every vertex in B has degree 5,
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and G0 has girth at least some function f(n) with limn→∞ f(n) = ∞ (for fixed β, c). Note

that |E(G0)| = 4|A| = 5|B| and n = |A| + |B| = |A| + 4
5
|A| = 9

5
|A|. Let G := L(G0). So

G is 7-regular. Suppose for the sake of contradiction that G has a vertex-partition V1, V2

such that each G[Vi] is (c, β)-separable. Without loss of generality, |V1| ⩾ |V (G)|/2. Thus

|V1| ⩾ |E(G0)|/2 = 2|A| = 10
9
n. On the other hand, |V1| ⩽ |V (G)| = |E(G0)| = 4|A| = 20

9
n.

Define p := ( c2
β20

2β−1
)1/β. By the lemma applied to G[V1], there exists S ⊆ V1 of size at most

c2β |V1|
(2β−1)pβ

⩽ c2β20n
(2β−1)pβ9

= n
9

such that each component of G[V1] − S has at most p vertices.

Let G1 be the spanning subgraph of G0 corresponding to V1. Let S1 be the set of edges

of G1 corresponding to S. So G1 has n vertices and at least 10
9
n edges. Thus G1 − S1 has

at least n edges. Hence G1 − S1 has a cycle C, which corresponds to a cycle in G[V1] − S.

Thus f(n) ⩽ |C| ⩽ p, which contradicts that f(n) → ∞. This contradiction proves the

theorem. □

The following generalisation is proved by the same method.

Theorem 24.5. For all c > 0 and β ∈ (0, 1) and k ∈ N there is a (4k − 1)-regular graph

that has no vertex-partition into k induced (c, β)-separable subgraphs.

25. Clustered coloring for bounded degree graphs (Chun-Hung Liu)

Problem 25.1. For every integer d, let f(d) be the smallest integer k such that there exists a

constant c such that every graph with maximum degree at most d can be partitioned into f(d)

induced subgraphs with no component on more than c vertices. Determine f(d) for d ⩾ 9.

It is known that ⌊d+6
4
⌋ ⩽ f(d) ⩽ ⌈d+1

3
⌉ for every d ⩾ 2, and f(d) = ⌊d+6

4
⌋ when d ⩽ 8. See

Wood for a survey. See Liu for the relation to the clustered chromatic number of the class

of H-immersion free graphs for every graph H.
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Other Problems

26. Monochromatic path covers of hypergraphs (Jane Tan)

Let K
(r)
n be the r-uniform complete hypergraph on n vertices. A tight path in such a graph

is a sequence of (at least r, say) vertices such that every k consecutive vertices form an edge.

We also allow the empty path, which contains no vertices or edges. The following question

is due to Maya Stein.

Question: Is it true that for every r, n and any 2-colouring of the edges of K
(r)
n , there

exist two monochromatic vertex-disjoint tight paths of different colours that together cover

all vertices in the graph?

The r = 3 case was originally asked by Gyárfás and Sárközy, and Stein gave a lovely short

proof of this (see arXiv:2204.12464). In the same paper, Stein conjectured that the answer

to the above question is yes for higher uniformities as well, but it is open for r ⩾ 4. It is

worth noting that the r = 3 result is not true when paths are replaced by cycles, although

it becomes true again if we additionally allow the paths to have the same colour. There is

also a good deal of surrounding literature that uses loose or Berge paths and cycles.

27. Does edge expansion force a large minor? (Anita Liebenau)

For a graph G on a n vertices and a subset S ⊆ V (G) let

h(S) =
e(S, V \ S)

|S|
and let h(G) be the minimum of h(S) taken over all nonempty subsets of size at most n/2. So

h(S) can be thought of as the average number of edges that a vertex of S sends to V (G) \S.
In 2019, Krivelevich and Nenadov asked the following question.

Question 27.1. Let G be a graph on n ⩾ n0 vertices, maximum degree at most d = d(n) ⩾

3, and h(G) ⩾ εd, for some constant ε > 0. Is it true that G has a clique minor on

Ω(
√

nd/ log d) vertices?

They proved this question under the additional assumption that

h(S) ⩾ (1/2 + ε) d

for every set S ⊆ V (G) of size at most εn. They also proved that any graph as in the question

has a clique minor on Ω(
√
n) vertices, that is, the answer is yes for constant d.
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Reference Complete minors in graphs without sparse cuts, Krivelevich and Nenadov, Inter-

national Mathematics Research Notices 2021, no. 12 (2021): 8996-9015, arXiv:1812.01961.

28. Is domination number a local property? (António Girão)

The domination number of a tournament T is the smallest size S ⊂ V (T ) for which for

every z ∈ V (T ) \ S there a directed edge wz for some w ∈ S.

In a very nice paper Harutyunyan, Tien-Nam Le, Thomassé, Wu showed that for every

every k there is g(k), f(k) such that every tournament with domination number at least f(k)

must contain a sub-tournament on at most g(k) vertices with chromatic number at least k.

They asked whether the same phenomenon must happen with domination number. Namely,

whether there is f ′(k), g′(k) such that every tournament with domination number at least

f ′(k) must contain a subtournament on at most g′(k) vertices which has domination number

at least k.

29. Covering with a Linear Number of Rainbow Paths (Lukas Michel)

A rainbow path in an edge-coloured graph is a path whose edges all have distinct colours.

The following problem was stated in a paper by Bonamy, Botler, Dross, Naia, and Skokan.

Problem 29.1. Is it true that for all properly edge-coloured graphs G on n vertices there

exists a covering of all edges of G with O(n) rainbow paths?

By greedily selecting a longest rainbow path and deleting it, it is possible to show that

O(n log n) rainbow paths suffice. It can also be proved that O(n) rainbow trails suffice to

cover all edges of G, where a trail is allowed to repeat vertices. Both of these constructions

produce partitions of the edges of G, but a covering with O(n) rainbow paths where edges

are allowed to be in multiple paths is already interesting.

30. Number of Perfect Matchings (Liana Yepremyan)

This is a problem of Maria Chudnovsky, from Barbados 2014 Graph Theory workshop.

I learned about it from Cosmin Pohoata recently. I do not know if any progress has been

made on this conjecture so if you do please let me know.

For a graph H, let pm(H) be the number of perfect matchings in H. A k-lift Gk of a

graph G is obtained by substituting a stable set Sx of size k for every vertex x of G, and

then joining Sx with Sy by a perfect matching whenever xy is an edge of G. Is it true that

if G is bipartite then

pm(Gk) ⩽ (pm(G))k.
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It is not hard to see that this bound does not hold for non-bipartite G. What if G is regular?

One can try to use some techniques that have been used for similar problems in the follow-

ing papers for upper bounding the number of independent sets or the number of colourings,

but I have not really tried any of these.

1. The number of independent sets in an irregular graph, A. Sah, M. Sawhney, D.

Stoner, Y. Zhao https://dx.doi.org/10.1016/j.jctb.2019.01.007

2. The Number of Independent Sets in a Regular Graph, Y. Zhao, https://dx.doi.

org/10.1017/S0963548309990538

3. An entropy approach to the Hard-Core Model on Bipartite Graphs, J. Kahn, https:

//dx.doi.org/10.1017/S0963548301004631

4. On weighted graph homomorphisms, D. Galvin, P. Tetali, https://arxiv.org/pdf/

1206.3160.pdf

31. Rooted K4-subdivisions (Raphael Steiner)

Problem 31.1. Given four distinct vertices a, b, c, d, characterize the edge-maximal graphs

G that do not have a K4-subdivision rooted at {a, b, c, d}, i.e., a subdivision of K4 where

a, b, c, d constitute the four branch-vertices.

This problem came up in email discussion with David Wood. It is of high interest, as a full

answer to it could be very useful for resolving several other problems relating to subdivision

containment, such as a proof of the still open case of Hajos’ conjecture for K5-subdivisions

(stating that every graph with no K5-subdivision is 4-colorable). Also, see the recent JCTB-

paper by Hayashi and Kawarabayashi which partially resolves a weaker form of the problem,

essentially looking at K4 − e (the diamond graph) instead of K4, and even this appears to

be non-trivial.

A generalization of rooted K4-subdivisions are rooted K4-minors, defined as follows: Given

four distinct vertices a, b, c, d in a graph G, we say that G has a K4-minor rooted at {a, b, c, d}
if G contains 4 disjoint sets A,B,C,D of vertices such that a ∈ A, b ∈ B, c ∈ C, d ∈ D, each

of G[A], G[B], G[C], G[D] is connected and there is at least one edge between any pair in

{A,B,C,D}. Fabila-Monroy and Wood gave a precise characterization of the edge-maximal

graphs with no K4-minor rooted at four given vertices. The characterization exhibits 6

different classes of such graphs, the most interesting of them being a planar graph with all

four nominated vertices on a common face, plus some attachments along separations that

form a facial triangle in the planar graph. While all these classes are also obstructions
22

https://dx.doi.org/10.1016/j.jctb.2019.01.007
https://dx.doi.org/10.1017/S0963548309990538
https://dx.doi.org/10.1017/S0963548309990538
https://dx.doi.org/10.1017/S0963548301004631
https://dx.doi.org/10.1017/S0963548301004631
https://arxiv.org/pdf/1206.3160.pdf
https://arxiv.org/pdf/1206.3160.pdf
https://doi.org/10.1016/j.jctb.2021.05.002
https://doi.org/10.37236/3476


for rooted K4-subdivisions, this is not everything, and indeed the answer for rooted K4-

subdivisions is expected to be a lot more complex. A simple example that has a rooted

K4-minor but no rooted K4-subdivision is if one take the graph K4 and adds one additional

degree 1-vertex connected to one of the four original vertices, and declares this vertex to be

a and the three non-neighbors of it to be b, c, d.

Given that the above example is loosely connected and of small minimum degree, it may

be natural to hope that for sufficiently highly connected graphs, such as 4-connected graphs,

say, the notions of rooted K4-minors and K4-subdivisions coincide. However, also this is not

the case, as obstructions to K4-subdivisions can also be in terms of space requirements for

the 6 necessary subdivision paths: Consider the complete bipartite graph K4,5 with all four

nominated vertices in the small color class. Then this does not have a rooted K4-subdivision

due to lack of space, is a 4-connected graph, and also in fact is easily seen to have a rooted

K4-minor at the nominated vertices. More generally, if a graph G with vertices a, b, c, d has a

set S of at most 5 vertices such that a, b, c, d are in distinct components of G−S, then a roted

K4-subdivision cannot exist. Thus, even stronger assumptions are required to make the two

notions of rooted K4-minors and -subdivisions coincide. In this direction, attempting to get

around the previously mentioned space-obstacle, David Wood asked the following question.

Definition 31.2. A set R ⊆ V (G) is well-connected in a graph G if for every set of vertices

S in G − R, if X1, . . . , Xc are the components of G − S, and ri := |R ∩ Xi|, then |S| ⩾∑
1⩽i<j⩽c rirj.

Note that if a graph has a Kt-subdivision rooted at the vertices in R (so necessarily |R| = t)

then R is well-connected in G, since every subdivision path between two vertices in R − S

that are in distinct components of G− S must traverse S.

Problem 31.3 (Wood). Is it true that if a graph G has a K4-minor rooted at {a, b, c, d} and
R := {a, b, c, d} is well-connected in G, then G also has a K4-subdivision rooted at {a, b, c, d}?

If this were true, it would be a big step forward in understanding the essential obstacles

to having a rooted K4-subdivision.

32. Graph classes admitting weak guidance systems (Zdeněk Dvořák)

Question 32.1. Which graph classes admit weak guidance systems of bounded maximum

outdegree?

A partial orientation of an undirected graph G assigns orientation to a subset of edges of

G (it is possible for an edge to be directed in both ways at the same time). A path P in G
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is weakly inwards-directed in a partial orientation of G if there exists an edge e ∈ E(P ) such

all edges of P (except for e) are directed towards e (the edge e may or may not be directed

in the partial orientation).

For a positive integer r, a weak r-guidance system in a graph G is a partial orientation of G

such that for any distinct vertices u and v at distance at most r in G, there exists a shortest

path between u and v in G that is weakly inwards-directed. An algorithmic motivation for

this notion is as follows: If G has a weak r-guidance system of maximum outdegree at most

∆ (for some ∆ ⩾ 2), then we can test whether input vertices u and v are at distance at most

r in time O(∆r), by enumerating the outgoing paths from u and v and checking where they

meet or become adjacent.

For a function f , we say that a class of graphs G admits f -bounded weak guidance systems

if for every positive integer r, every graph G ∈ G has a weak r-guidance system of outdegree

at most f(r, |V (G)|). A few examples:

• Graph classes with bounded expansion, as well as their first-order transductions,

admit f -bounded weak guidance systems for f(r, n) = Or(1).

• Hereditary graph classes of girth at least five admit f -bounded weak guidance systems

for f(r, n) = Or(1) if and only if they have bounded expansion.

• Interval graphs admit f -bounded weak guidance systems for f(r, n) = 2.

• Graphs of bounded cliquewidth admit f -bounded weak guidance systems for f(r, n) =

Or(log n), but not for f(r, n) = or(log n/ log log n).

• Chordal graphs do not admit f -bounded weak guidance systems for any f(r, n) =

or(n
1/2).

For more background, see https://arxiv.org/abs/2204.09113.

Question 32.2. Which graph classes admit f -bounded weak guidance systems for f(r, n) =

Or(1)? Or for f(r, n) = nor(1)?

33. Erdős-Gallai Conjectures for binary matroids (Bryce Frederickson)

Erdős and Gallai conjectured that the edge set of any Eulerian graph on n vertices can

be decomposed into O(n) vertex-disjoint cycles. We consider a handful of analogues of this

conjecture in the setting of matroids. A (simple) binary matroid is a subset M ⊆ Fn
2 \ {0}

for some n ⩾ 1. We say that M is Eulerian if
∑

x∈M x = 0, and we say that M is a circuit

if M is Eulerian, but no nontrivial proper subset of M is. We define rank(M) to be the

cardinality of the largest linearly independent subset of M .
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Problem 33.1. For some binary matroid parameter f(M), which of the following statements

hold?

i Every Eulerian binary matroid M can be expressed as the union of disjoint circuits

C1, . . . , Ct ⊆M , with t ⩽ f(M).

ii Every Eulerian binary matroid M can be expressed as the union of (not necessarily

disjoint) circuits C1, . . . , Ct ⊆M , with t ⩽ f(M).

iii Every Eulerian binary matroid M can be expressed as the symmetric difference of

circuits C1, . . . , Ct ⊆M , with t ⩽ f(M).

iv Every Eulerian binary matroid M ⊆ Fn
2 \ {0} can be expressed as the symmetric

difference of circuits C1, . . . , Ct ⊆ Fn
2 \ {0}.

In the Erdős-Gallai setting, the conjectured value O(n) is quite natural since an Eulerian

graph can have Ω(n2) edges, and each cycle in a decomposition covers at most n edges. By

the same token, a natural choice of f(M) to consider for our context might be something

along the lines of

f(M) = O

(
2rank(M) − 1

rank(M) + 1

)
.

In fact, since (iv) provides some extra flexibility compared to (i), we might even be able to

get away with something like

f(M) = max
N⊆M

⌈
|N |

rank(N) + 1

⌉
for (iv). This would give an analogue to the Nash-Williams Theorem on arboricity, which

was generalized to matroids by Edmonds.

34. Universal Graphs for Planar Graphs (Linda Cook)

Tony Huynh, Bojan Mohar, Robert Šámal, Carsten Thomassen and David Wood [Univer-

sality in minor-closed graph classes] asked several nice questions. In particular:

Problem 34.1. Is there a minimal graph U (under subgraph relation) that contains every

planar graph as a subgraph?

Some necessary criteria for U and further nice quesetions are found in Section 7 of Uni-

versality in minor-closed graph classes. Stanis law Ulam originally asked whether there is

a countable planar graph that contains every planar graph as a subgraph. János Pach an-

swered this question in the negative in 1981. Then Huynh, Mohar, Šámal, Thomassen and

Wood strengthed this to show that a countable graph that contains all countable planar
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graphs as subgraphs must contain an infinite complete graph as a minor, and a subdivision

of the complete graph Kt with multiplicity t, for every finite t. Last year, Thilo Krill showed

that there is no countable planar graph that contains every planar graph as a subdivision

answering a question of Diestel and Kuhn in the negative.

35. Universal graphs with bounded maximum degree (Florian Lehner)

Let us call a graph H universal for a graph class G, if every member of G is a subgraph of

H. Huynh, Mohar, Šámal, Thomassen, and Wood asked the following question:

Question 35.1. Does the class of planar graphs of maximal degree 3 admit a universal graph

with bounded maximal degree?

Question 35.2. Does the class of graphs of maximal degree 3 (without the requirement of

planarity) admit a universal graph with bounded maximal degree?

I was able to prove [A note on classes of subgraphs of locally finite graphs] that the

second question has a negative answer. The proof is based on the fact that there are ‘too

many’ graphs of maximum degree 3. More precisely, let BG(v, r) denote the ball in G with

centre v and radius r, then the size of the set {BG(v, r) | ∆(G) ⩽ 3, v ∈ V (G)} grows

superexponentially fast in r.

Let us call a graph class small, if it does not satisfy this property, that is, the number

of non-isomorphic balls of radius r appearing in members of the class is bounded above by

some exponential function.

Problem 35.3. Is there a small graph class G such that ∆(G) ⩽ 3 for every G ∈ G which

does not admit a universal graph of finite maximum degree?

36. Treewidth in perturbations of circle graphs (Rutger Campbell, Pascal

Gollin, O-joung Kwon, Sebastian Wiederrecht)

A circle graph is the intersection graph of chords of a circle, that is lines (curves) drawn

in the disk whose endpoints are the points intersecting the boundary.

Geelen conjectured that for every H, every sufficiently rank-connected graph G exclud-

ing H as a vertex-minor is a “pertubation” of a circle graph.

We want to look at a class of graphs of graphs obtained from a simple type of pertubation

defined by some geometrtic condition.

If we draw chords on a surface Σ with boundary and looking at their intersection graphs,

we get other classes of graphs, which we call Σ-diagram graphs. If Σ is a disk, we get circle
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graphs. Looking at chord diagrams in the crosscap / Möbius strip gives us crosscap-diagram

graphs. This class of graphs is closed under pivot-minors and each crosscap-diagram graph

can be obtained from some circle graph by performing a rank 1 pertubation. Looking at the

chord diagrams in the annulus gives us annulus-diagram graphs. We can switch between the

classes of crosscap-diagram graphs and annulus diagram graphs by performing a single local

complementation (which again is a rank 1 pertubation). So the union of crosscap-diagram

graphs and annulus-diagram graphs is closed under vertex-minors. Moreover, each annulus-

diagram graphs can be obtained from circle graphs by performing a rank 2 pertubation.

Building on 15 we want to study the unavoidable induced subgraphs of graphs with large

treewidth for graphs that are the symmetric difference of a circle graph and a clique on a

subset of vertices.

As a starting point, we want to consider the crosscap-diagram graphs or annulus-diagram

graphs defined in as follows: A circle graph is the intersection graph of chords of a circle, that

is lines (curves) drawn in the disk whose endpoints are the points intersecting the boundary.

If instead of in a disc, we draw the chords on a different surface Σ with boundary and

looking at their intersection graphs, we get other classes of graphs, which we call Σ-diagram

graphs. Looking at chord diagrams in the crosscap / Möbius strip gives us crosscap-diagram

graphs. This class of graphs is closed under pivot-minors and each crosscap-diagram graph

can be obtained from some circle graph by performing a rank 1 pertubation. Looking at the

chord diagrams in the annulus gives us annulus-diagram graphs. We can switch between the

classes of crosscap-diagram graphs and annulus diagram graphs by performing a single local

complementation (which again is a rank 1 pertubation). So the union of crosscap-diagram

graphs and annulus-diagram graphs is closed under vertex-minors. Moreover, each annulus-

diagram graphs can be obtained from circle graphs by performing a rank 2 pertubation.

37. Low Distortion Embeddings (Marc Distel)

For a map f from a metric space X to a metric space Y , let α, β be minimal such that

for u, v ∈ X, 1
α

distX(u, v) ⩽ distY (f(u), f(v)) ⩽ βdistX(u, v); the distortion of f is defined

to be the product αβ. We then say that X can be embedded in Y with distortion at most

d := αβ. For a given class of graphs G, is there a constant d such that every graph in

the class embeds into ℓ∞1 , the infinite dimensional reals with the 1-norm, with distortion

at most d? In particular, I ask if we can take G to be the class of all planar graphs of

treewidth at most 3. The statement is true if G is the class of all graphs with treewidth

at most 2 (https://ieeexplore.ieee.org/document/4691008) or any class with bounded
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pathwidth (https://arxiv.org/abs/1708.04073). The case where G is the class of all planar

graphs is a long standing open problem from https://link.springer.com/article/10.

1007/s00493-004-0015-x which my problem aims to work towards.
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