Kevin Hendrey, Extremal functions for sparse minors

Room B232 IBS (기초과학연구원)

The extremal function $c(H)$ of a graph $H$ is the supremum of densities of graphs not containing $H$ as a minor, where the density of a graph is the ratio of the number of edges to the number of vertices. Myers and Thomason (2005), Norin, Reed, Thomason and Wood (2020), and Thomason and Wales (2019)

Eunjin Oh (오은진), Feedback Vertex Set on Geometric Intersection Graphs

Room B232 IBS (기초과학연구원)

I am going to present an algorithm for computing a feedback vertex set of a unit disk graph of size k, if it exists, which runs in time $2^{O(\sqrt{k})}(n + m)$, where $n$ and $m$ denote the numbers of vertices and edges, respectively. This improves the $2^{O(\sqrt{k}\log k)}(n + m)$-time algorithm for this problem on unit disk

Joonkyung Lee (이준경), Majority dynamics on sparse random graphs

Room B232 IBS (기초과학연구원)

Majority dynamics on a graph $G$ is a deterministic process such that every vertex updates its $\pm 1$-assignment according to the majority assignment on its neighbor simultaneously at each step. Benjamini, Chan, O'Donnell, Tamuz and Tan conjectured that, in the Erdős-Rényi random graph $G(n,p)$, the random initial $\pm 1$-assignment converges to a $99\%$-agreement with high

Donggyu Kim (김동규), 𝝘-graphic delta-matroids and their applications

Room B232 IBS (기초과학연구원)

Bouchet (1987) defined delta-matroids by relaxing the base exchange axiom of matroids. Oum (2009) introduced a graphic delta-matroid from a pair of a graph and its vertex subset. We define a $\Gamma$-graphic delta-matroid for an abelian group $\Gamma$, which generalizes a graphic delta-matroid. For an abelian group $\Gamma$, a $\Gamma$-labelled graph is a graph whose

Ben Lund, Maximal 3-wise intersecting families

Room B232 IBS (기초과학연구원)

A family $\mathcal F$ of subsets of {1,2,…,n} is called maximal k-wise intersecting if every collection of at most k members from $\mathcal F$ has a common element, and moreover, no set can be added to $\mathcal F$ while preserving this property. In 1974, Erdős and Kleitman asked for the smallest possible size of a

Jaehoon Kim (김재훈), 2-complexes with unique embeddings in 3-space

Room B232 IBS (기초과학연구원)

A well-known theorem of Whitney states that a 3-connected planar graph admits an essentially unique embedding into the 2-sphere. We prove a 3-dimensional analogue: a simply-connected 2-complex every link graph of which is 3-connected admits an essentially unique locally flat embedding into the 3-sphere, if it admits one at all. This can be thought of

Casey Tompkins, Ramsey numbers of Boolean lattices

Room B232 IBS (기초과학연구원)

The poset Ramsey number $R(Q_{m},Q_{n})$ is the smallest integer $N$ such that any blue-red coloring of the elements of the Boolean lattice $Q_{N}$ has a blue induced copy of $Q_{m}$ or a red induced copy of $Q_{n}$. Axenovich and Walzer showed that $n+2\le R(Q_{2},Q_{n})\le2n+2$. Recently, Lu and Thompson improved the upper bound to $\frac{5}{3}n+2$. In

Seonghyuk Im (임성혁), Large clique subdivisions in graphs without small dense subgraphs

Room B232 IBS (기초과학연구원)

What is the largest number $f(d)$ where every graph with average degree at least $d$ contains a subdivision of $K_{f(d)}$? Mader asked this question in 1967 and $f(d) = \Theta(\sqrt{d})$ was proved by Bollobás and Thomason and independently by Komlós and Szemerédi. This is best possible by considering a disjoint union of $K_{d,d}$. However, this

Eun-Kyung Cho (조은경), Independent domination of graphs with bounded maximum degree

Room B232 IBS (기초과학연구원)

The independent domination number of a graph $G$, denoted $i(G)$, is the minimum size of an independent dominating set of $G$. In this talk, we prove a series of results regarding independent domination of graphs with bounded maximum degree. Let $G$ be a graph with maximum degree at most $k$ where $k \ge 1$. We prove that

Tuan Tran, Exponential decay of intersection volume with applications on list-decodability and sphere-covering bounds

Room B232 IBS (기초과학연구원)

We give some natural sufficient conditions for balls in a metric space to have small intersection. Roughly speaking, this happens when the metric space is (i) expanding and (ii) well-spread, and (iii) certain random variable on the boundary of a ball has a small tail. As applications, we show that the volume of intersection of

IBS 이산수학그룹 Discrete Mathematics Group
기초과학연구원 수리및계산과학연구단 이산수학그룹
대전 유성구 엑스포로 55 (우) 34126
IBS Discrete Mathematics Group (DIMAG)
Institute for Basic Science (IBS)
55 Expo-ro Yuseong-gu Daejeon 34126 South Korea
E-mail: dimag@ibs.re.kr, Fax: +82-42-878-9209
Copyright © IBS 2018. All rights reserved.