BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//Discrete Mathematics Group - ECPv5.3.1.1//NONSGML v1.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:Discrete Mathematics Group
X-ORIGINAL-URL:https://dimag.ibs.re.kr
X-WR-CALDESC:Events for Discrete Mathematics Group
BEGIN:VTIMEZONE
TZID:Asia/Seoul
BEGIN:STANDARD
TZOFFSETFROM:+0900
TZOFFSETTO:+0900
TZNAME:KST
DTSTART:20210101T000000
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=Asia/Seoul:20210203T163000
DTEND;TZID=Asia/Seoul:20210203T173000
DTSTAMP:20210125T014806
CREATED:20201106T054235Z
LAST-MODIFIED:20210115T011803Z
UID:3241-1612369800-1612373400@dimag.ibs.re.kr
SUMMARY:Ron Aharoni\, Colorful KKM and multiple cakes division
DESCRIPTION:In the “cake partition” problem n players have each a list of preferred parts for any partition of the [0\,1] interval (“cake”) into n sub-intervals. Woodall\, Stromquist and Gale proved independently that under mild conditions on the list of preferences (like continuity) there is always a partition and assignment of parts to the players\, in which every player gets a piece belonging to her list of preferred parts. In fact\, Gale proved a colorful version of the famous KKM theorem\, not realizing that this is the same problem\, but on the other hand\, proved the problem its proper setting. I will discuss the case of partitioning more than one cake – how many players can you make happy\, when there is a general number of cakes\, and general number of players. \nJoint work with Eli Berger\, Joseph Briggs\, Erel Segal-Halevi and Shira Zerbib.
URL:https://dimag.ibs.re.kr/event/2021-02-03/
LOCATION:Zoom ID: 934 3222 0374 (ibsdimag)
CATEGORIES:Virtual Discrete Math Colloquium
END:VEVENT
END:VCALENDAR