BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//Discrete Mathematics Group - ECPv5.4.0//NONSGML v1.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:Discrete Mathematics Group
X-ORIGINAL-URL:https://dimag.ibs.re.kr
X-WR-CALDESC:Events for Discrete Mathematics Group
BEGIN:VTIMEZONE
TZID:Asia/Seoul
BEGIN:STANDARD
TZOFFSETFROM:+0900
TZOFFSETTO:+0900
TZNAME:KST
DTSTART:20200101T000000
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=Asia/Seoul:20200407T163000
DTEND;TZID=Asia/Seoul:20200407T173000
DTSTAMP:20210301T220006
CREATED:20200403T043936Z
LAST-MODIFIED:20200629T005854Z
UID:2269-1586277000-1586280600@dimag.ibs.re.kr
SUMMARY:Pascal Gollin\, Disjoint dijoins for classes of dibonds in finite and infinite digraphs
DESCRIPTION:A dibond in a directed graph is a bond (i.e. a minimal non-empty cut) for which all of its edges are directed to a common side of the cut. A famous theorem of Lucchesi and Younger states that in every finite digraph the least size of an edge set meeting every dicut equals the maximum number of disjoint dibonds in that digraph. We call such sets dijoins. \nWoodall conjectured a dual statement. He asked whether the maximum number of disjoint dijoins in a digraph equals the minimum size of a dibond.\nWe study a modification of this question where we restrict our attention to certain classes of dibonds\, i.e. whether for a class $\mathfrak{B}$ of dibonds of a digraph the maximum number of disjoint edge sets meeting every dibond in $\mathfrak{B}$ equal the size a minimum dibond in $\mathfrak{B}$. \nIn particular\, we verify this questions for nested classes of dibonds\, for the class of dibonds of minimum size\, and for classes of infinite dibonds.
URL:https://dimag.ibs.re.kr/event/2020-04-07/
LOCATION:Room B232\, IBS (기초과학연구원)
CATEGORIES:Discrete Math Seminar
END:VEVENT
END:VCALENDAR